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1. PHYSICAL LIMNOLOGY: INTRODUCTION

Physical limnology is the study of the motion and mixing of water in a lake, reservoir,
wetland or stream. In this article I shall confine my comments to lakes and reservoirs. A lake
is a holding basin for water which usually enters the lake via a set of streams. Solar radiation
imparts heat at the surface stabilising the water column. Evaporation, sensible heat transport
and long wave radiation at the surface of a lake can either add to impart additional heat or, as is
the case in the fall, add to lead to a net cooling causing convection iumnediately beneath the
water surface. Wind at the surface imparts momentum which leads to a general mnotion in the
lake and turbulent kinetic energy which energizes mixing of the surface layer. Additional
forcing is imparted by river inflows and overflows or selective outflows. The inflows and
outflows may act to increase or decrease the stability of the water column depending on the
temperature structure and the physical configuration of this forcing.

In general, the motion in a lake is the result of the balance between all the disturbing and
restoring forces listed above. However, due to the configuration of the applied forces the
water column responses may be categorised into the following flow regimes.

Inmediately beneath the water surface there is a layer which is being actively mixed by the
action of the wind or is undergoing stratification due to solar radiation; this is called the diurnal
surface layer. Beneath this surface layer there is the subsurface layer which is the stratified
buffer between the surface layer and the water immediately beneath. The pressure fluctuations,
due to the turbulence in the surface layer, excite internal waves in the subsurface layer which
break and sustain an active level of turbulence in the presence of a usually strong stratification.
Together the surface and subsurface layers respond strongly to the meteorological forcing at the
time and grow and decay depending on the conditions overhead. The water beneath the
subsurface layer is strongly stratified to a depth of up to 30 meters, below which the strength
of stratification rapidly decreases. The strongly stratified region is called the metalinmion and
this acts, due to the strong stratification, as a wave guide for a spectrumi of internal waves. The
stratification is due to seasonal heating and the point where the stratification gradient peaks is
called the seasonal thermocline. The weakly stratified fluid below the metaliinion is called the
hypolinnion and in this the water tends to remain quiescent, not because of the stability of the
water column, but rather due to the absence of large forcing. The exception to this statement
occurs during strong winds when the barotropic forcing becomes strong enough to initiate a
general circulation in the lake as a whole. Adjaceni to the lake bottom we again find a turbulent
layer, the benthic boundary layer. The benthic boundary layer is energized by the currents
overhead, internal wave energy reflecting off the sloping bottom and internal waves breaking
due to shoaling. The degree to which any of these features may be observed in a lake, at a
particular time, depends on the climate and the immediate weather conditions.

The article by Imberger and Patterson (1989) gives a full account of physical limnology, but
emphasises advection and mixing. Hutter (1991) gives an excellent foundation to the theory of
internal seiches and waves. Imboden and WVilest (1994) review the traditional mixing ideas and
compare these. with the results from tracer experiments. A particularly useful reference on the
benthic boundary layer may be found in Gannett e at, (1993), while Gargett (1989) provides an
excellent overview of mixing in the ocean. With respect to mixing, the reader is also referred
to the review article on chaos by Ottino (1990, and the general review of turbulent mixing in
stratified fluids by Fernando (1991). For a basic yet extremely thorough overview of internal
waves, the reader is referred to the books by Phillips (1977) and Turner (1979). The two
articles by Gregg (1989) and (1993) provide a very recent update on the ideas of how internal
waves lead to mixing in a stratified water body. Ir this context the Proceedings of the three
speciality workshops on internal waves held in Hawaii are also recommended (MUller &
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Henderson, 1989, 1991, 1993). The relevance of the physical processes to ecological
processes is discussed by Imboden (1990).

The contents of this article are a synopsis of a more detailed very recent article (Imberger
1994), which I prepared for an anniversary volume in honour of the limnologist Margalef. I
have shortened the text, as the original article was written for a different audience and I have
added some more technical material, but no attempt was made to alter the structure.

2. THERMAL CHARACTERISTICS

The physical response of a lake to a surface wind stress, a river inflow or an outflow via a
river or offtake tower is strongly dependent on the thermal stratification present in the lake.
This thermal stratification may be predominant in only the vertical direction, or it may be biased
in the drection of the long axis of the lake as is the case in throughflow reservoirs. In addition
the overall density stratification caused by the thermal stratification may be either enhanced or
weakened by a layering in chemical constituents.

The motion in a stratified lake is thus the result of a delicate interplay between the four
dominant disturbances (wind, inflow, outflow, differential heating), the potential energy of the
resident stratificatioa, the bathymetry of the lake and the earth's rotation if the lake is large.
"lTis interplay between the disturbing a-d restoring forces is reviewed in Imberger (1985),
Imnberger and Patterson (1989), Imboden and Wilest (1994).

The seasonal variability of the thermal regimes of a lake are now well documented and a
great many papers exist with examples of the seasonal variation of the thermal stratification in a
particular lake. In winter the lake water is usually cold and reasonably homogeneous, in spring
there is a general warming of the surface waters which leads to a peak stratification towards the
latter half of summer. During autumn, surface cooling gives rise to penetrative convection
which progressively cools and deepens the surface layer. Strong winds often assist this
deepening process until finally the water becomes well mixed.

Numerical models have been developed for the prediction of the seasonal thermal cycle;
these are described in Imberger and Patterson (1989). However, the models are not able to
fully bridge the spectral range of scales of motion, from the basin scale to the turbulent large
wave number motions; "hi- range spans scales from 104 m to 10-4m. The smallest grid sizes
that have been used in estuarine and lake modelling (Stronach et al. 1993) are about 100 m to
500 m. All processes smaller than this have been lumped together and modelled with different
closure schemes. The simplest of these closure schemes is the assumption of a constant eddy
exchange coefficient (Casulli & Cattani 1994). More sophisticated closure schemes have been
used in the geophysical content (Mellor & Yamada 1982; Fukushima & Watanabe 1990; Zic
1990). These authors used a k-E scheme modified to account for the buoyancy flux in the
turbulent idnetic energy equation. Such models appear to reasonably successfully predict the
bulk properties of small scale phenomena such as gravity currents (Fukushima & Watanabe
1990; Hrirzler et al. 1994(a) and 1994(b)), but even for such flows the turbulent properties are
reproduced only poorly.

For lake simulations as a whole such models appear to completely miss the point. Field
data in lakes (Imberger & Ivey 1993) and in the ocean (Gregg et a;. 1993; KudryaAtsev &
Soloviev 1990) suggests, at least in the stratified metalimnion, the water offers very low
internal frictional resistance with vertical exchange coefficients for both momentum and mass
being close to molecular; the momentum transport which does take place is dominated by
internal wave transport. This nicmans that internal friction is usually not an important dynamical
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consideration, therefore using complicated closure schemes based on shear turbulence but 4

which neglect internal waves, is of questionable value. The turbulent transport which does
exist is, however, crcial from a biological point of view as it is this transport, albeit small and
patchy, which nourishes the plankton in the surface layer with nutrients contained in the deeper
water, circulates material from the benthic layer to the lake water column and cycles organisms
within the surface layer exposing them to a changing light climate.

Uittenbogaurd (1988) has clearly shown that in order to correctly describe the mean fluxes
in the stratified water column we must account for the energy store in the internal wave field.
This realization has been discussed for a considerable time now in the oceanographic literature
(Imberger & Patterson 1989; Gargett 1989; Gregg 1989; Gregg et al. 1993; Garrett & Munk
1979). We review this material in the following sections where we also suggest recipes for theinclusion of intzemal wives energy as an integral part of a nmodel; to date there is no such model

available.

3. SURFACE LAYER

Surface layer energetics are discussed and reviewed fully in Imberger and Patterson (1989).
An update of the most recent methodology for estimating surface exchange coefficients is given
in the article on gas exchange processes by MacIntyre et al. (1994). A description of the
ikternal boundary layer may be found in Garratt (1990) and a general review on surface fluxes
is given in Freuzen and Vogel (1992).

The surface layer is defined as the layer of water extending from the surface, where the
waves form and break, down to a depth where the direct influence of the surface wind and
surface heat fluxes stops.

Under certain wind conditions a second surface layer forms inmmediately below the surface
layer; pressure fluctuations in the surface layer induce internal waves in the underlying fluid
which radiate down into the water column causing active mixing for many meters below the
diurnal thermocline. We call this the subsurface layer (Zic & Imberger 1994; Wijesekera &
Dillon 13 91). The surface and subsurface layer are important for the growth of plankton.
Since plankton grow in the surface layer in response to light, any coherent motion in the
surface layer which sweep plankton through a cyclic light regime are most important. Further,
the nutrient supply for the plankton growth comes from the subsurface layer via the turbulence
flux sustained by the intenai wave field there.

Models based on the turbulent kinetic energy equation appear to work remarkably well
(Spigel et al. 1986) mid are able to accurately predict the rate of deepening of the surface layer
and also the mean temperature of the sulface layer water. This is true even though models of
this !iad completely ateglect the spatial variation of the turbulence within the layer, neglect an
explicit description of the leakage of internal energy from the base of the thernocline, neglect
the presence of coherent motions, but at the same time contain constant ene-rgy conversion
coefficients. The conclusions which may be drawn from this apparent success is that either all
the neglected factors are implicitly accounted for, the models have not beez verified over a wide
enough range of conditions, or the neglected factors do not contribute significantly to the
deepening of the surface layer. As shown below it is most likely the first and last conclusion
which are consistent with very recent observations. It is important to note, however, that the
neglected mechanisms, particularly the presence of coherent motions, may have major
implications for the growth of plankton.

-3-
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These models assume a constant fraction of the rate of the working of the wind is
transported to the water column. This suggests that the turbulent boundary layer inumediately
below the water surface is in equilibrium and thus should contain similarity profiles for all the
turbulent properties. The dissipation of turbulent kinetic energy is the variable most often
measured and the evidence here is still somewhat conflicting. Soloviev et al. (1988),
Lombardo and Gregg (1989), Imberger (1985), and Shay and Gregg (1984) all find that
similarity is essentially present with ekz/u*3 being close to one and dB rang-mg between 0.4
and 0.8. Here k is the von Karman constant, z is the distance from the surface, B is the
buoyancy flux and e is the rate of dissipation of turbulent kinetic energy. On the other hand,
Gargett (1989) examined data from the north-east Pacific and found that, for periods of rapidly
increasing wind speed, e - z-4, a much faster decay with depth. The likely explanation for the
relatively much larger dissipation values near the surface is the presence of plunging jets due to
wave breaking. Zedel and Farmer (1991) found that bubbles resulting from breaking waves
could penetrate down to 13 metres for wind speeds of about 12 ms-1. If we exclude the area
immediately under the breaking wave zone it appears that similarity is preserved for times when
the wind speed is relatively steady.

The assumption that the energy loss due to internal wave leakage is captured by the
dissipation at the base of the billow layer is probably poor at best. Zic and Imberger (1994),
Stevens and Imberger (1994), and Wijesekera and Dillon (1991) have presented data showing
that strong leakage occurs during the initial deepening period but when active billowing sets in
energy is no longer communicated into the metalimnion; parameterization of this leakage is,
however, still poorly understood.

During strong heating periods the model of Spigel eta!. (1986) assumes a rapid decay of the
dissipation field. This seems to have been verified by lmberger (1985) and Kudryavtsev and
Soloviev (1990). The case where the buoyancy flux is roughly in equilibrium with the wind
has not received any attention (see Imberger & Patterson 1989 where this point was previously
made).

Langrauir circulation (Langmuir 1938) has recently received a great deal of attention in the
oceanographic literature. This follows the earlier documentation by Wellev etal. (1985) and
Thorpe and Hall (1982). The papers by Weller and Price (i988), Smith (1992), Osborn et al.
(1992), and Soloviev (1990) all point to a consistent picture. Langmuir's cells exist as
opposing vortex rolls, the size of which grow under neutral conditions with wind speed
keeping a depth to width ratio at about 1:1. The dovawwelng zone between two opposing rolls
is more confined than the upwelling zone and is also the plane of a relatively strong horizontal
jet in the direction of the wind. The vertical growth of the cells is inhibited when the base of
the cell reaches the diumal thermocline and the aspect ratio can then grow to 1:3 or 1:4. In the
downward convergent zone the dissipation is considerably larger than in the rest of the cell and
this may further explain the higher dissipation values documented by Gargett (1989). Osborn
eta!. (1992) make the point that Langmuir circulation may be present, as evidenced by bubble
Pilume spacmgs, even tho-ug, there is no surface evidence. The longitudinal structure is
characterised by points where the surface manifestations converge and the rolls pair. Further,
Thorpe and Hall (1982) and Soloviev (1990) show that Langmuir cells are interrupted
longitudinally by temperature gradient sheets which have a spaecing of many 100's of meters.

The physical mechanism responsible for the formation of Langmuir cells is believed to be
the production of longitudinal vorticity by the interaction of the cross-wind vorticity of the
wind shear layer and the vertical vorticity of the periodic variation due to the wave Stoke's drift
(Leibovich 1977; Leibovich & Radhakrishnan 1977). This theory has undergone many
modifications, the latest being the inclusion of a finite thickness of the diurnal surface layer and
realistic boundary conditions of the water surface. Cox and Leibovich (1993) have shown that
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these inclusions lead to a realistic finite estimate for the scale of the Langmuir circulation.
Thorpe (1992) performed a stability analysis of adjacent parallel vortex rolls and showed that a
longitudinal instability is possible which results in pairing at length scales of 100s of meters;
in good agreement with observations.

As evidenced by the success of the energy models (Section 3.2). Laugmuir cells are of
lesser impoutance for the production and redistribution of the turbulent kinetic energy or the
modification of the entraimnent velocity at the base of the surface layer. However, the
circulation induced by cells is extremely importance for the growth of plankton (Patterson
1991) and the distribution of bubbles and the associated gas exchange (MacIntyre et al. 1994;
Thorpe 1984).

4. MAIN WATER BODY

4.1 Currents, Eddies, Internal Waves and Intrusions

Now let us turn to the prorblem of understaLding the transport processes in the main body of
the lake. Before we can do this we imst discuss, at least briefly, the nature of the composite
motions in a stratified water body. TMs is a vast topic and we shall only give a brief overview
and then show how to establish a simple recipe for the flux of mass and momentum in the
water column between the surface layer and the bonthic boundary layer.

In general, riotions in lakes are energized by the wiad acting on the lake surface and
dirough differential cooling at the surface (Monismith et al. 1986). The momentum input fromr
these two sources leads to currents, eddies, intrusions and internal waves; intrusions are
internal waves with long periods (Lemckert & Imberger 1993). Eddies form mainly in large
lakes through the action of murrents, induced by Kelvia waves, sweeping the water past
headlands. This gives birth to large pancake shaped eddies at headlands and these traverse the
lake canying with them mass. Ivey and Maxworthy (1992) have given graphic evidence from
laboratory experiments of the rormation and propagation of such eddies. Whlan established the
currents, eddies, intrusions and internal waves combine to trigger patches of turbulence
throughout the lake.

This scenario is best illustrated by example. During the recent BITEX experiment,
theimistor chains were place in the southern pAt of Lake Biwa. These chains recorded the
temperature from 20 thermistors, spaced approximately Laiforrmly over the water depth, at the
measurement site. The lake has a depth of over 90 meters and a surface area of around 300
km2. and the array of chains were located in 50 mtnters of water. The temperature was
sampled at 2 second intervals, averaged over 14 seconds and &&en recorded. T'hae recording
continued over a period of 4 weeks dOiing which the weather was mostly calr and sunny.
However, on day 247 a major typhoon, with wind speeds up to 25 ns-- passed almost directly
overhead. A more minor typhoon was again experienced oil day 252.

The temperature from the thermistor located at a depth of 22 m, in the middle of the
metaliniioa, is shown in Figure 4.1.1(a). Between days 236 and 247 the temmcature showed
small undulations with a frequency of about 2 days; otherwise the signal was relatively
quiescent. The typhoon which passed on the evaning of day 247 induced a sharp ramp-like
increase in temperature which was followed by strong utdalations for the next 6 days after
which they decayed. The second typhoon on day 252 fuather energised the oscillations. The
signal was low passed (2 hour uut off) and the results are shown :n Figure 4.1.1(b). The
smoothed signal shows the Kelvin wave osc'llation more clearly. Spectral analysis revealed
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I:
that these long waves had a period of 41 hours which is similar to that previously measure by

Okuda etal. 1994.

A spectrogram was constructed from the temperature record shown in Figure 4.1.1(a) using
a 2 day window and a 1 hour window shift. This is shown in Figure 4.1.1(c). Inspection of
this spectrogram reveals very clearly the scenario discussed above. Before the main typhoon
passed the site energy levels were low, only wealdy correlated with the phase of the Kelvin
wave and there was little energy above 10-4 Fiz. However, after the storm had excited the arge
Kelvip waves, the internal wave energy levels becanr strongly correlated with the phAl- of the
Kelvin wave; energy levels rose strongly dur•ng periods of downwelling due to the Kelvin
wave. At the same time energy penetrated to frequencies beyond 10-3 Hz, in particular,
immediately after the storm where there was substantial energy to 10-2 Hz. Thee data were
accompanied by an intense sampling programme of microstrWcture flux measurements; the
times of these measurements are shown at the base of Figace 4.1.1 and these data are presently
being analysed. Preliminary analysis clearly shows elevated levels of dissipation of turbulent
kinetic energy during periods of elevated internal wave activity.

The character of the motion in the water column- is graphically illustrated in Figure 4.1.2
which shows the isotherms for a brief period immediately after the passage of the typhoon; the
water column was filled with a mixture of long mode one and two waves, undular bores, free
intemnal waves and turbulence. The turbulence is thus clearly the result of the shear induced by
the composite motion and the local weakening of the siability of the water column by the
straining due to internal waves.

A major consideration in this scenario is the role internal waves play in the distribution of
energy. If we have an internal wave which has an energy density (energy per unit volume of
water) of say E (Joules m-3), then this energy will only ultimately decay through the action of
the dissipation of turbulent kinetic energy c. Thus we may write:

dE (4.1.1)

so that the time it takes for the wave to decay may be estimated from:
E0 (4.1.2)

td - -o ,

where co is the initial rate of dissipation.

Now for waves as shown in Figure 4.1.1(a), E0 = 20 J m-3 and a typical dissipation rate was
10-9 m 2 s-3 so that the time taken for the wave to decay is about 230 days. This is a very long
time! Much longer than what is observed in Figure 4.1.1(b), which indicates a decay time of
around 3 days. This implies that the reflection process at the boundaries is far from perfect and
large dissipation must occur at the reflecting sites. Further, since the dissipation processes
involve wx.ve breaking, we expect a dispersion of the frequency content of the reflected waves
and this is possibly the site for the formation of the solitary waves seen in Figure 4.1.2 (Kao et
al. 1985; Gan & Ingram 1992).

In summary, internal waves distribute mean kinetic energy very effectively throughout the
lake. In the water column this composite nonlinear wave field leads to turbulence through what
appeaLs to be two distinct actions. First, shear induced instability and second, weakening of
the stability of the water column due to nonlinear internal wave straining. At the boundaries the
internal waves again induce turbulence in two distinct ways. First the waves reflect and so
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intensify the energy density (Phillips 1977) and second, the nearly horizontal internal waves
shoal and break as they propagate towards the shore. I shall now discuss each of these four 4
mechanisms separately.

4.2 Shear Flow Turbulence

In order to understand the role of shear, consider the very simplest configuration-that of a
uniform mean shear flow in a linearly stratified fluid. The problem is completely specified by
the parameters :

S, N2  v IC t q'(0) , e

s-1 S-2 m2 s-1  m2 S"1  s ms-1  in,

where S is the shear, N2 is the buoyancy frequency, v the viscosity, ic is the molecular
diffusion coefficient, t is the time, q'(o) is the initial RMS of the velocity fluctuations and Qc(o)
is the initia RMS scale of the motion.

To conform with convention we choose the first three dimensional numbers as Ri = N21 S2,
T = St and Pr = v / 1c. The Richardson number Ri has a simple physical interpretation if one
examines the energetics of mixing. Suppose we have a layer of the linearly stratified fluid of
thickness kc which is partially mixrA so that the new buoyancy frequency in the patcn is N2 and
the new shear is S2. Thus the ratio 4f the potential energy required to mix the water column to
that available from the mean kinetic energy released by the mixing is given by:

APE 2-yN 2  2Y
AKE P(2- P)s2 P(2-- R)

(4.2.1)

wherey and P3 are the mixing fraction; a value of one means N2
2 =0 and S2 = 0.

Now dissipation occurring during the mixing event may be estimated by noting that the
dissipation per unit mass must scale, from as p0u 3/ R, so that the energy lost to dissipation over
the tine it takes to mix the fluid is given by :

S23 RC 2 (a2 e 3e;2c•" - POL .-- 'I'- P0U2 C"P0 C-) AcRIE (4.2.2)

u u c az )422

since the time scale for releasing the kinetic energy is given f,/u (Tennekes and Lumley, 1972)
and u the velocity clmnrcterising the larger scale motions in the mixing event is given by

rnus if Ri < (2- ) I• there is sufficient energy available from the mean kinetic energy field

to overcome the necessary potential energy required to achieve the mixing, but there must be an
c.xcess energy available to supply the energy for the dissipation. Stability analysis (Yih, 1980)
tells us that the flow is stable for Ri > 1/4. Suppose the value 1/4 forms the stability boundary
then according to the above model, whenever there is complete mixing of the fluid column,
50% of the kinetic energy is released to dissipation and 50% is used to lift the mixed fluid
parcel resulting in a change of potential energy. On the other hand, when the mixing is only

-7..



partial and the process may be modelled more closely by taking the limit P and y tending
towards zero, then the division of energy is 75% of the released kinetic energy going to
dissipation and only 25% of the released energy is utilised to lift the fluid parcel. This is an
important result as most experimental evidence on mixing efficiency points to a conversion
ratio close to the latter value (Ivey & Imberger 1991).

The evolution of the flow must also depend on the initial conditions imposed as these are the
conditions from which the flow evolves. Thus, unless the turbulence quickly "forgets" the
history of its origin, the initial conditions will be important in determining the flow
characteristics. This influence may be captuiied by introducing the nondimensional parameters:

Frt(0) q'(0) (4.2.3)

/2(0)1/2 (0) ,

Re, (0) = q v(O) c(0) (4.2.4)

Thorpe (personal communication) has shown, using a linear stability analysis, that the
linear shear flow is stable for all values of Ri so if k is to be non-zero, the profile must be
unstable to finite values of Frt(O) and Ret(0). Numerical experiments carried out by Holt et al.
(1992) starting with a finite disturbance, show that provided Ri is sufficiently small, e, grows
with time, indicating that the linear shear case is unstable to finite initial disturbances. Ivey et
al. (1994) analysed the results from a large number of these and further numerical experirments
for the case where the Richardson number was small enough to cause active growth of the
turbulence. Under these circumstance, they found that for a wide range of Prandil numbers
and Richardson numbers : 0.21 the displacement scale was given by:

2= 8 p K.I(s ton, (4.2.5)

where n = 1.9 (0.21 - Ri) (Ri• 0.21), (4.2.6)

independent of the initial conditions or the Prandd number and,

V12) , (4.2.7)

which we shall call the primitive length scale. Comparison between this prediction and the
numerical data used to derived the above correlation is shown in Figure 4.2.1.

The dissipation of turbulent kinetic energy F and the buoyancy and the momentum fluxes at
a point are further population parameters which again must be functions of the set of
dimensionless groups. Ivey et al. (1994) showed:

e=8vS2 (St) 2n ; (Ri-5 021). (4.2.8)

B = -- 13 V S2 Ri (St)2n ; (Ri <•0.21) (4.2.9)
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M=fiur = vS[8+13Ri](St)2n (Ri<0.21)- (4.2.10)

The vertical mass eddy exchange coefficient may thus be written:

K~B E =16 (4.2.11)Kp = B = 1.6 Ri ' =--.
2 2 s2

so that the ratio of the mass to the momentum eddy coefficients becomes:

K: =(8+"Ri) ' (4.2.12)

indicating for active turbulence, Ri < 0.21, there is very little difference between the mass and
momentum transfer coefficients. This is of course not the case when Ri becomes large; under
such circumstances momentum will continue to be transferred by the internal waves (Kim and
Mahrt 1992), but the mass flux ceases. However, under such circumstances the concept of a
transfer coefficient is no longer useful and it is better to calculate the momentum flux directly
by, say, wave ray tracing techniques (Phillips 1977). Further study is required for the case
where Ri is at first less than the critical value and is then suddenly increased. Only empirical
results are available on the mass and momentum transfers during the ensuing collapse of the
turbulence.

It is, however, interesting to note that many authors have developed formulaw, especially
for the mass transfer coefficient (4.2.11) in terms of cnly the Richardson number of the flow
and these formulae have been used with some success in describing flows in estuaries, lakes
and even the ocean (Odd & Rodger 1978; Simpson & Sharples 1991). The fact that these
formulae appear to yield useful results means that, in the field, there are other factors which
limit the growth of the turbulent scale ke and so prevent the continued growth of the
turbulence. This conjecture needs a thorough evaluation.

For practical application of (4.2.11) and (4.2.12) it is useful to enquire whether it is
necessary to track the whole history of the turbulent event, or is it possible to take a local
approach as suggested by (4.2.11) which does not depend explicitly on time, but time enters
only through the dissipation e, a "local" parameter.

4.3 Some Local Concepts; generalization to other flows

The key towards a generalisation of the above discussion beyond a simple shear flow is the
realisation that there may be variables of the turbulent flow itself in terms of which all the other
characteristics of the flow may be described. Further, if these fundamental variables are such
that they may be either easily measured or derived from the mean flow then we ate in a position
to once again close the equations of motion and derive the transfer of mass and mDmentum.
Again from dimensional analysis such parameters exist and are given by (Imberger 1994):
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.24
3 (4.3.1)

Fr,=T-(, -e

which reduces to the familiar form Frt = fwenwaloasmeta tewol ag

1
of scales in the flow is active so that u- •

Similarly, the Reynolds number,

Re (3) (E41I (4.3.2)

Again, for active turbulence this leads to the more traditional definition of the Reynolds
number:

Ret =([UC). (4.3.3)

The Grasshof Grt is defined by:

and the strain Froude number is defined by:

(4.3.5)

where the strain rate, . (4.3.6)

Given the alxbve definitions it is now possible to construct an activity diagram. This is
shown in Figure 4.3.1 and the type of motion is reflected by the position of the data on this
diagram. Ivey et al. (1994) used these parameters to derive general relationships for the
various turbulent quantities. These are reproduced in table 4.3.1. The special case of shear
driven turbulence in a linearly stratified fluid discussed above is given by the Frt = 1/2 Ri-1/ 2.
Thus for a value of the Richardson number of 0.21, Frt = 1.1 again indicating that for the
stationary state the value of the Froude number is near one and the mixing efficiency is a
maximum (Ivey & Imberger 1991).

-10-
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The exact nature by which the internal waves interact among themselves and with the
turbulence is at this stage not clear; the aztivity diagram, first advocated by Gibson (1986), is,
however, a convenient tool to parameterise the turbulent fluxes under a wide range of
conditions. As mentioned earlier a major mechanism, in addition to the enhanced shear
produced by the internal waves, is the reduction of the local stability due to internal wave
straining. In Figure 4.3.2 we show results from Javam et al. (1994), who compiled the flow
due to two internal wave rays crossing and interacting. Clearly visible is the build up of a
small region in the middle of the crossing where there is extensive vertical stietching of the
isopycnals; laboratory experiments carried out by Teoh et al. (1994) using similar
configuration with approximately the same Reynolds and Froude number showed that the
regions of stretching are also the points where turbulent spots are formed. Clearly, internal
waves can thus produced turbulence by focussing the shear or by decreasing the stability by
stretching the isopycnals; one increases the disturbance force and the other decreases the
stability. Both lead to the formation of turbulent spots where mass and momentum transport
takes place.

4.4 Estimating the Values of e and ec

The biggest difficulty in the closure question for a lake is thus no longer estimating the
mixing efficiency, but rather finding the distribution and intensity of the mixing patches.
Turbulence in the field involves many instability mechanisms other than the simple linear shear
flow discussed above. Turbulence may be generated within a stratified fluid by two or more
waves interacting (wave-wave instability), internal waves being trapped by the background
shear (critical layer absorption), heavier fluid being somehow moved above lighter fluid
(convective instability), or internal waves breaking by shoaling or shear steepening (wave
breaking) (see Phillips (1977) and Turner (1979) for further details).

A number of methods of increasing complexity suggest themselves for estimating the
dissipation e in the main fluid body and thus the patch intensity and distribution:

a) The simplest assumption is to assume that the overall water body under consideration is
in equilibrium with the external forcing and there are no patches. All the energy
introduced by the wind, not utilized to mix the surface layer, is distributed by the internal
wave field into the metalimnion and hypolimnion where it is ultimately converted to
dissipation and buoyancy flux. This approach was suggested by Imberger et al. (1978)
and is successfully operating in the numerical model DYRESM; in that model the energy
input from the inflowing river and the outflow are also added. The weakness of this
algorithm is that we do not know, a priori, what fraction of the total internal wave energy
is dissipated at the boundaries, and what is dissipated internally, nor is the assumption of
continuous dissipation representative of field evidence.

b) In the ocean the internal wave spectrum is in equilibrium and the flux of energy from
!ge scales to siall s.caie is -- nl thr-ouh wave-wave on. With this
assumption it is possible to relate the dissipation to the shear at a 10 m scale and the
actual buoyancy frequency. Gregg (1989) has suggested the formula:

1 (. . (4.4.1)
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where No = 0.0052 s-1, S10 is the shear observed at 10 m scale and S4 GM = 3.92 X 10 -5
(N / NO) 2. This formula cannot be expected to work in lakes or estuaries since there is
no equilibrium internal wave spectrum, but appev s to yield excellent results in the ocean.

c) In general, we must resort to numerical calculations of the large scale intera wave field
and use the cascade mechanism to route the energy down to small scales. In a separate
model we may calculate the spectrum of free internal waves; this can be done by
propagating the waves after they have formed, allowing thera to interact, energizing them
from the larger field computed in the first model, and accounting for all reflections and
frequency transformations. Given this information it is possible to use wave-wave
interaction theory to calculate the energy flux moving to smaller scales and then equate
this to the dissipation. Such a model is presently not available, but is being constructed
by the author and his colleagues.

Let us now turn to the other variable Rc, the length scale required to determine the efficiency
of mixing. Again there are a number of ways of approaching the estimation of this variable.

a) Oceanographers have noted that most energetic mixing episodes have the property that
Frt is close to one. There are good reason why this should be so (Imberger & Ivey
1991). Detailed documentation of a collapsing intrusion was recently given by Lemckei
& Imberger (1994) who show that as an intrusion travelled through a lake Frt - 1, but
the Reynolds number Ret became progressively smaller until viscosity finally damped all
turbulence. If this is the case, then Rf = 0.23 and we may calculate the buoyancy flux
directly from turbulent kinetic energy budget (Ivey & Imberger 1991). A very simple
model thus follows. It may be assumed that the dissipatior, is given firm above and the
buoyancy flux is used to calcultre the mass and momentum transport over the time step.
A simple scheme would be to ignore the collapse process and only account for the active
transport periods.

b) One could assume that the mixing in the lake, when active, is modelled by simple shear
flow. If this is the case then Kp follows directly from e and Ri through (4.2.11) without
the knowledge of 9C. The dissipation e follows, however, directly and is given by 3.2
el/2 S-3/2 . Once the decay equations have been found it will be possible to also model
episodes where the Ri suddenly increases from a low to a higher value.

5. BENTHIC BOUNDARY LAYER AND GRAVITY CURRENT

5. 1 The Benthic Boundary Layer

In Section 4.1 we saw that a great deal of energy supplied by the wind to the internal wave
field is lost not internally in the water column, but rather at the boundary, implying we should
see active turbulence adjacent to the lake bottom. This is further supported by the observation
that in both the ocean and in lakes the basin scale average vertical exchange coefficient is
around 10-4 m2 s- 1 (Imberger & Patterson 1989; Garrett 1991; Hondzo etal. 1991) whereas
microstructure observations would suggest a value between 10-6 and 10-5 m2 s-1; (Gregg et al.
1993; Imberger & Ivey 1991) again indicating that theie must be other flux paths by which
mass is =ansported vertically through the lake. Such a conclusion has important consequences
for the biologist since if the dominant flux path is along the benthic boundary layer and then
into the main water body horizontally via intrusions then particles will be periodically recycled
through the benthic boundary layer. In other words particles will experience a cycling through
water of low and high oxygen content.

-12-
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Many observations have been made documenting the occurrence of turbulence at the lake

bottom (for example Imberger & Ivey 1991; Ivey & Boyce 1982; Thorpe et al. 1990).
Excellent reviews exist for the analogous problem in the ocean.

5.2 Sources of Energy

If the benthic boundary layer is to remain turbulent then there must be a source of turbulent
kinetic energy which overcomes the dissipation. Originally, Armi (1978) and Munk, (1966)
postulated that ocean currents sweeping the water over a rough bottom, could be one source.
Long internal Kelvin waves may be dissipated by such action; their period is much longer than
the time b,/ it takes to establish the turbulence in the layer. At present no experimental data
appear to exa in lakes for the development of such stress driven layers.

A more likely source of energy for the maintenance of turbulence in the benthic boundary
layer is the smaller intemal waves. Two mechanism may be cited as possible sources. First,
wave reflection leading to energy intensification and then tmrbulence and second, internal wave
breaking due to shoaling. A very clear explanation of the first mechanism may be found in
Phillips (1977) who discusses the linear theory and Thorpe (1987) who provides the first order
correction due to non-linearities. The turbulent spots may form at or away from the boundary
and as shown by Ivey and Nokes (1989) this turbulence is able to transport mass vertically.

The second mechanism is usually associated with large internal waves shoaling on a sloping
boundary. Such waves may break leading to active turbulence. The energy remaining is
reflected in the form of solitary internal waves (Whitham 1974) and these then propagate away
in their own right (see Figure 4.1.1). This is a vast subject and the reader is referred to the
review articles by Chu and Chou (1989) and Boyd (1989).

Eriksen (1985) and later Garrett and Gilbert (1988) postulated a boundary turbulence model
for the ocean which conceptually was most attractive. The idea was that the spectrum of
internal waves propagating towards a boundary is modified by wave reflection whenever the
waves encounter a boundary. The increased energy density, wave steepness and rate of strain
are assumed to push energy into the breaking part of the spectrum. These authors then simply
assumed that the energy which went outside the breaking boundary in the spectrum was lost to
turbulence. The experiments discussed by Van Haren et aL (1992) and Thorpe et al. (1990)
were an attempt to verify this model, however, the evidence is inconclusive.

In summary a number of plausible mechanisms exist which may be used to explain the
existence of a turbulent benthic boundary layer. These are bottom currents, internal wave
reflection and internal wave shoaling. So far, however, there is no simple recipe to predict
either the thickness of the benthic boundary layer nor the dissipation rates within it. This is a
top priority for further research given thauje benthic boundary layer is the interface between
the bottom sediments and the water column and perhaps, even more importantly, given that it is
most likely the main conveyer of fluid, particless addi-ss•oh,-e t.rio.. b.,.+--- t-.. d -Ap . n
shallow waters.

5.3 Boundary Layer Fluxes

Given the existence of a turbulent benthic boundary layer around the lake bathymetry, it is
natural to enquire what role this turbulent layer plays with respect to the flux paths of material
throughout the lake. This problem has attracted much attention starting with the pioneering
work of Phillips (1970) who showed that in linearly stratified fluid a shear flow dispersion
layer is set up next to a sloping boundary. Recent contributions are discussed fully in Garrett
(1991) and Garrett et al. (1993). The dynamics underlying the transport of water through the

-I
- 13 -



benthic boundary layer were derived by Imberger and Ivey (1993) via a perturbation analysis
which allowed a unification of previous theories, particularly those of Salmun et aL (1991) and
Woods (1991). A number of different scenarios are possible.

First, suppose that the energy source for this turbulence ceases with the passage of the group
of internal waves which provided the energy. The turbulence will then collapse, leaving
behind a volume of water close to the boundary which is relatively well mixed compared to the
water immediately adjacent in the main body of the lake. Such a mixed volume will then
collapse and intrude horizontally into the lake, the speed and thickness of the intrusion
depending on the initial density difference and volume of the boundary water (cf Imberger et al.
(1976) and Lemckert & Imberger (1994)).

Second, if the source of energy remains active for some time, but the energy is focussed
locally onto a relatively small part of the boundary (as would be the case if a long internal wave
train continued to beach there), then a local mixing boundary layer will form. The mixing will
set up a horizontal density anomaly between the fluid in the boundary layer and the interior of
the lake, and an intrusion will form. This is equivalent to stirring locally near the boundary in a
stratified water body. Common experience leads to the conclusion that the stirred area becomes
a source of intermediate density water which then intrudes horizontally into the lake (De Silva
& Fernando 1992). The process is also analogous to that induced by differential mixing at the
Gurface layer (Ivey & Maxworthy 1992).

Third, if the boundary layer extends over an alongshore distance which is large compared to
the thickness of the benthic boundary layer then a continuous flux is maintained. In such cases
the temperature gradient in the main part of the lake is imposed on the boundary via a turbulmnt
boundary layer. In this layer the gradients normal to the bottom dre small due to the
turbulence, but the gradient along the slope is the same as in the interior. By simple analogy
with the original solution derived by Phillips (1970) a density current is established which is
driven by the tendency of the constant density surfaces to return to the horizontal; near the lake
bottom the fluid moves up the slope and near the top of the benthic boundary layer the fluid
moves downwards.

On the other hand, if the stratification in the lake is non-linear, as would normally be the
case due to the stronger stratification in the metalimnion then, since the shear dispersion
mechanism transport is proportional to the mean longitudinal temperature gradient, there would
be a strong heat transfer near the level of the thermocline and progressively weaker heat
transfer above and below. This would mean that the boundary layer above the thermocline
would cool, and immediately below the thermocline it would warm. Garrett (1990), Woods
(1991) and Salmun etal. (1991) showed that in order for this flow to achieve a steady state, a
convection is induced in the boundary layer which brings warm water down from near the
surface to arrest the cooling above the thermocline, and cold water up from the bottom to arrest
the warming just below the thermocline.

Imberger and Ivey (1993) derived the dynamics of this combined shear dispersion and
convection mechanism. The. induced flow along the boundary converges at the thermocline
and thus vents into the interior of the lake, leading to an effective basin average vertical
exchange coefficient KB given by

h9 cos2 sin3  d

KB= 8.3x 10"0 E( (5.3.1)
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where h is the benthic boundary layer thickness, 0 is the bottom slope angle, A is the density
of the water column, Z is the vertical distance, e is the dissipation of turbulent kinetic energy in
the boundary layer and 2 is the lake hydraulic radius (A/P) where A is the area of the lake at
height Z and P is the associated perimeter. Equation (5.3.1) appears to lead to reasonable
estimates of the bulk vertical transport and boundary layer thickness.

In large lakes or the ocean where the earth's rotation becomes important, MacCready and
Rhines (1993) (see also the discussion in Garrett et at. (1993)) have shown that an Ekman
suction may be superimposed on the above flow which may act to oppose the gravitation
transport, so leading to a zero flux boundary condition.

6. FUTURE DIRECTIONS

6.1 Field Work

Over the last 10 years oar ability to measure physical parameters over the whole range of
scales (1-(3 m to 105 m) has increased dramatically. It will soon become possible to mount
new experiments which quantitatively map processes occurring in a lake. Examples of such,
much needed, experiments are,

(a) The quantification of the energy and mass flux paths throughout the whole lake.
(b) Sources of energy for the benthic boundary layer and factors which determine its

thickness.
(c) Verification of the mass flux in the benthic boundary layer.
(d) Energy cascade from iateral waves to turbulent patches.
(e) LeakMe of internal wave energy from the base of the surface layer.
(f) Formation of solitary waves due to seiches encountering a changing tapography.
(g) Formation of gyms due to topographic constraints.
(h) Entrainment into gravity and turbidity currents.
(i) Horizontal dispersion in the hypolimnion.

(j) Dynamics of Langmnir circulation.

(k) Mass flux in the benthic boundary layer and the venting in the thermocline; impact on the
iron, manganese, nutrient and carbon cycles.

(1) Influence of the mixing in the subsurface layer on the nutrient supply to the surface layer.

(m) Cycling of plankton by coherent motions in the surface layer and its influence on the
population selection of the plankton.

(n) The importance of gyres in the transportation of carbon and nutrients from side arms to
the wain body Of thew a1e.

(o) Importance of shear stress on the growth of plankton and other particles in the surface
layer.

(p) The role of the intermittent turbulence in the interior of a lake on the flocculation of
particles.
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6.2 Laboratory and Numerical Experiments

The introduction of particle image velocimetry (PlV), laser induced fluorescence (LIV) and
miniature sensors for tmperature, conductivity and velocity measurements mark a quantum
jump in our ability to study fundamental fluid mechanical processes in the laboratory. This
should see a renaissance for the hydraulic engineei, but the signs are otherwise; most groups
have abandoned their laboratories at the encouragement of fanding agencies who see the
world's solutions in closure schemes and the computer screen. Without doubt this ruistake
must be rectified over the next few years. Further, simulations using the full Navier Stokes
equations (example Lin et al. (1994) and Javarn et aL (1994)) are now at the point where they
can effectively complement the laboratory.

The tollowing are examples of where such a joint approach of nunerical and experimental
may be expected to lead to major advances in the very near future,

(a) Internal wave-wave interaction.
(b) Critical layer absorption
(c) Breaking of internal solitary waves
(d) Brealking of internal waves on the sloping bottom.
(e) Turbulence induced by internal waves reflecting from a sloping bottom.
(f) Entrainment into gravity and turbidity currents.
(g) Quantification of horizontal transport due to the formation of gyres.
(h) Energy cascade in an internal wave spectra and transfer from basin scale seiching to

internal waves.
(i) Energy leakage from the base of the surface layer.
(j) Quantification of aoherent motions in the surface layer.

6.3 Numerical Modelling

The need to introduce model equations is clearly necessitated by the very large scale range in
lakes; a 0.2 m3 the present full simulation capability (Holt era!. 1992) is a long way from a
lake with volum of 108 i 3 . It is unlikely that such volwuns will be amenable to full solutions
even with massively parallel computers. We may expect, therefore, continued strong
development of models which capture the major processes active in a lake, yet run fast enough
that meaningful simulations can be completed.

The major need appears to be how to account for the energy store in the internal wave field
and then how to dissipate this energy so as to properly apportion a certain amount to increasing
the potential energy of the water column. The following is a concept of how this may be
achieved. First, the basin scale motions should be computed with a model such as described
by Casulli and Cattani (1994). Such models can now deal relatively comfortably with 2 x 106
grid points when run on a fast workstation. For a lake with dimensions 6 Inm x 1 km X 30 m
this means a resolution of close to 12 m x 12 m x 0.05, fine enough to resolve P-l basin scale
motions together with intrusions and the bulk of the internal wave spectre. Present
development has as one of its objectives to verify the hydrostatic pressure assumption of each
grid point and correct the pesure for the influence of the vertical acceleration when necessary.

Second, at each grid point of the first model the directional internal waves spectra is stored.
At each time step the energy in the internal waves is propagated, reflected, modified due to
wave-wave interaction and decreased due to dissr-ation as appropriate. Such algorithms need
to be developed but in principle are already clear from the vast literature on internal waves. The
net result would be an updating of the internal wave spectra at each grid point and at each time
step. Third, and this is still the area of greatest unclarity, the energy available from the internal
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wave energy cascade must be added to that available from the mean shear and this is used, as 4
discussed in 4.3, to calculate the buoyancy flux ard the Reynolds stress. It may be expected
that when complete such models will yield detailed descriptions of the transport in the lake and
so forn a suitable base for water quality process models.
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Figure 4.3.2. Thm density field for two intersecting internal waves generated locally in a stratified
fluid. (a) Isopycrial from numerical simulation (Javam et al.). Paramneters are: frequency *A,~ 0.4
rad/s, buoyancy frequency N 1, I d/s, flow Reynolds number = 1.4 x 104; Froude, number =0.8 and
Richardson numnber = 6.25. (b) Density gradient image from numerical simnulation. (c) Rainbow
Schlieren image obtained from laboratory Crcoh et al.)
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Laboratory Measurements of

Gravity Wave, Critical Layer Interactions
Donald P. Dellsi and Timothy J. Dunkerton

Northwest Research Associates, P 0 Box 3027, Bellevue WA 98009-3027

ABSTRACT

Laboratory measurements of gravity wave, eritical layer interactions are presented.
Th measurements were obtained in an annular, sat-stratified water tank. A vertical shear is
added by rotating a lid on the water surface. Internal gravity waves are generated by moving
the bottom floor of the tank vertically. The gravity waves propagate up into the tank and in-
teract with their criticai level, the level where the wave phase speed equals the mean flow
spece Measurements are presented for two categories of bottom-wave forcing: expeiments
with a single, monochrmuatic bottom wave and experiments with two monochromatic bottom
waves.

INTRODUCTION

Gravity waves occur naturally in the ocean ard the atmosphere. They are important in
transporting monentum and for generating turbulence, thereby producing mixing. One
mechanism for the breakdown of a gravity wave into turbulence occurs when the wave
approaches its critical level, which is defined as the level where the horizontal phase speed of
the wave equals the mean flow speed (Booker and Bretherton, 1967). When this occurs, the
wave's vertical propagation is modified, wave energy is transferred to the mean flow, and tur-

e=ace can be generated.

Most of our present understanding of gravity wave, critical level interactions has come
from theoretical and ntmerical studies (see e.g., Bretherton, 1966; Lindzen, 1981; Fritts, 1984;
Maslowe, 1986; and Dunkerton and Robins, 1992, to name a few). In addition, there have
been attempts at observational studies of this phenomenon (e.g., Merrill and Grant, 1979).

In the laboratory, studies of gravity wave, critical level interactions under controlled
conditions have been reported by Bretberton et al., 1967; Thoipe, 1973; Koop, 198%; Koop
and Mc-Gee, 1986; and Delisi and Dunkerton, 1989. In these experiments, the reported results
have typically been qualitative in nature, and most experiments were limited by the physical
dimensions of the test facility, which limited the duration of the interactions.

THE EXPERIMENTAL FACILITY

The experimental facility used in these experiments is described in detail in Delisi and
Dunkerton (1989). Our facility is a modification of a laboratory wave tank developed byPlumb and McEwan (1978). A schematic of the facility is given in Figure 1. The tank is

annular, with an outer diameter of 1.8 rn, an inner diameter of 1.2 m, and a depth of 40 cm.

The bottom floor of the tank is moved vertically by 32 stepper motors. Each stepper
motor drives a vertical piston which moves acrylic plates on the bottom floor of the tank. A



rubber sheet on top of the acrylic plates acts as a water seal and as a flexible membrane for the
floor. A computer controls the stepper motors, thus driving each sectiont in a prescribed way.
In this manner, we can specify the motion of the bottom floor as one or more waves which
propagate around the bottom of the tank with imown amplitudes, wavelengths, and phase
speeds. In these ¢xperimonts, the computer controlled the floor to move as either a single,
monochromatic wave or as two monochromatic waves, with diffeaiat phase speeds. Wave-
number two was used in all the experiments.

To perform an experiment, we fil the tank with a known stratified salt water profile,
rotate a floating lid on the water surface to create a vertical shear profile, then propagate one
or two waves on the bottom floor of the tank by moving the floor vertically with the stepper
motors. Flow measurements include density data from an oscillating conductivity probe, mean
and instantaneous velocity profiles from streak photographs of neutrally buoyant particles, 35-
run and video pictures of shadowgraph flow visualization which show the turbulent regions,
and, in some cases, instantaneous velocities using Digital Particle Imaging Velocimetiy (Willr•t
and Gharib, 1991).

Typical initial velocity and density profiles are shown in Figure 2. The velocity profile
s'lows a nearly constant velocity at the top, where the lid has mixed the fluid, and a nearly
exponential velocity profile beneath the mrixed region. The initial density profile shows two,
linearly stratified density layers. To minimize the depth of the mixed layer generated by the
rotating lid, we placed a high-N region at the top of the tank, next to the rotating lid. The
Brunt-Vaisala frequency, N. for this layer is 1.62 sec-'. where N = (g/p dp/dz)i', g is the ac-
celeration due to gravity, p is density, and z is the vertical coordinate. N for the bottom layer
is 1.02 seC¢.

RESULTS

One Wave Results

Several, different experimental configurations were investigated using single wave
forcing. In the experiments reported here, we propagated a single wave on the bottom with a
peak-to-peak amplitude of 4.0 cm and a phase speed of 4.5 crA/sec. The movement of the
bottom floor was not exactly sinusoidal, but was asymmetric to match the propagating wave-
fronts in a nonsheared, linearly stratified fluid. This asymmetry in the forcing funcdion mim-
icked the generated gravity wave and, therefore, reduced the higher harmonics that would be
generated by using a sinusoidal wave.

The velocity profiles for these runs were obtained by digitizing instantaneous streak
photographs. An important experimental question was W determine how repeatable conditions
remained from run to run when the experimental conditions were nominally the same. Figure 3
sHOWs vclotky proftles from two nominally identical ruis at the same tme dur•ing cwah runi. To
within the experimental accuracy, the agreement is quite good, indicating that the data are
reproducible from run to ran.

Videotapes and 35 mm photographs of shadowgraph visualization clearly show regions
of overturning and turbulence as a function of time. An example of a 35 mm photograph is
shown in Figure 4. This photograph shows a side view of the tank, with the bottom of the
mixed layer at the top of the photo and an overturning region about mid-way down in dhe tank.
A clock is shown at the bottom, and the oscillating conductivity probe is shown (with its

2
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shadow) in the right-most part of the picture. The flow is from left to right. The overtrnings
shown in this photo have a wavelength of about 10.9 cm, and an amplitu& of about 2.1 cm.
With the videopes, we see that these overtumings begin as small perturbations which grow
with time, and then collapse. Richardson number estimates, obtainod from the velocity and
density measurements, along with the observed growth and decay, indicate that the instabilities
am Kelvin-Helmholtz (K-H) in nature.

IFom the photograph in Figure 4 and the videotapes of the shadowgraph visualizations,
we can determine the vertical extent of the breaidng regions as a function of time. Figure 5
shows the observed regions of turbulence vs time after the start of the bottom floor along with
contours of constant density from the conductivity probe for the first ten wave cycles of an
experimen. (Note that time is increasing from right to left in Figure 5. This is consistent with
the photograph in Figure 4 in which the flow is from left to right.) The overturning regions in
Figure 5 first appear near the top of the tank and progress downward, toward the bottom
floor, as time progresses. For t > -13 mrin, most of the observed turbulence occurs in mixing
regions in the bottom half of the tank (Delisi and Dunkerton, 1989), with only sporadic, patchy
turbulence being observed in the top half of the tank. The mixing regions occur once every
wave cycle.

The evolution of the mean velocity profile (Figure 6) shows that the initial velocity
profile is modified by z velocity ledge which progresses downward with time, similar to the
overturning regions (Figure 5). The mean flow modifications shown in Figure 6 arc qualita-
tively similar to those piedicted by numerical simulations (Dunkerton and Robins, 1992),
although the overturning regions in those simualaions are characterized as convective
overturning rather than K-H. In our laboratory experiments, the initial K-H overturning is
observed during the time the ledge is a feature in the mean flow; the mixing regions appear to
occur when the velocity in the lower par of the tank is more nearly constant.

Two Wave Results

In these experiments, we forced the bottom with two waves, one with a phase speed of
4.5 cm/sec, and the second with a phase speed of. 3.5 cr/sec. Each wave had a peak-to-peak
amplitude of 3.0 cm. With these choices, the bottom forcing has a beat period of 4 minutes.

The overturning regions for this case are shown in Figure 7. In this figure, time pro-
gresses firom left to right, and only observed regions of turbulence are displayed. This figure
shows that the regions of turbulence appear to bifurcate around t - 13 miin, with regions of
turbulence appearing in the top and the bottom regions of the tank. The shadowgraph visuali-
zations show that, at early times (t < - 13 min), the breaking regions are K-H, as in the one-
wave case. For the two-wave case, t > -13 mrin, K-YI overturning continues at a depth of
around 17 cm while a mixing region, similar to that in dte one-wave case, appears in the lower
portion of the tank. The K-H regions in the upper part of the tank appear more or less
periodically throughout the lifetime of the experiment This is in contrast to the turbulent
regions in the bottom of the tank, which appear in packets of three. Ihe time interval between
these packets is due to the beating of the two bottom waves.

The evolution of the mean flow for the two-wa.ve case (not shown), averaged over one
beat period, i•, similar to the one-wave case in that a velocity ledge progresses downward
toward the floor during the time the initial K-H overturning is observed. Thereafter, the mean
velocity is nearly constant with time.
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FIG 4. Shadowgraph visualization of Kelvin-HelMboltz overturning in a one-wave experiment.
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NONLINEAR INTERNAL WAVES IN
OBSER1VATIONS FROM SHELVES:

MANIFESTATIONS OF SOLITON-LIKE
BEHAVIOUR

A. N. SEREBRYANY

N.N.Andreev Acoustics Institute, Moscow 117036, Russia

1. Abstract
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STRATIFIED FLOW OVER AN OBSTACLE: NONLINEAR
WAVE INTERACTIONS IN THE LEE WAVE FIELD

Kevin G. Lamb

Departnzeit of'Physics, Mezn anal University of Newfoundland
St. Johnz's, Newfouzndland, CANADA AiD 3X7

Abstract

Determining the internal gravity waves generated by the two-dinmensional flow of a
stratified fluid over wi obstacle is anl irliplortalit problemi. Recent calculationls using a
fully nonlinear, inviscid numnerical miodel show that nonhinearitics canl substantially mnodify
the nature of the flow field in certain p~arametetr regimies (Lamub 1994). Ani approximate
nonllinear. spectral mo1del has leied developeni whi ch qualitatively reproduces the behaviour
of the fully nonlineax mnodel. Thisj MOdel is usedI to explore the niature of the nonllinear
wave generation process.

Introduction

In Lamb (1994) a primnitive equation nuinerical nmodel was used to inivestigate two
dimuensional stratified flow over a single smooth obstacle. A rigid lid was used and the
fluid had a nondjiniensional depth of onle away froml the obstacle. Far upstreaml the flow
had a constant horizontal velocity also nondiniensionalized to one and a conistanit buoyancy
frequenicy N. Froude numubers

iH

be-tween 0.5 and 1.0 were considered. It waLs shown that ill certainl Iarailutt(' regimles; large
amlplitude, waves could be gener-ated through a nonlinear mechaniismu.

Nonlinearities inl this problemn arise fromn two sources: i) the nionlinear termis -il the
governing equations, alid ii) the nonlinear nature, of the boundary condition over the obsta-
cle. Amnong other effects the presence of anl obstacle results inl larger depth averaged flow
and xncau: stratification over the obstacle which effects wave I)r'OpagatiOnl. Figure 1 shows
the miode. onec and two waves for two mnodel runs with F 0.666, oie. with anl obstacle. and
oneV with a depression. The lower boundary is at

1 ±aD (2)

with: the half width D P0.17 andhe amplitudes a M 0.12 for the obstacle and -0.12 for the
(lelSression. The flow is froN ewft to right. The linear solution (alames 1979) for the obstacle
case is shown for comtparison. Both ineodel runlsshow a simiilar highlly nonlinilear behaviour.
The nonlinearly lenerated waves include three domis ant types, the generation of which area
strongly coupled. A large mode-one wave, attaeled to thex downstream lsid of the obstalcl,
oscillates in amplitude. Wit] each oscillation a long m.ode-one wave is generated which
propagates up1strea. A largve eode-two wUae is also goenled. It. pr topagates against. thwU

1 *
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flow but is advected downstream. Downstream (if the obstacle a train of mode-two waves is
formed along with a lee-wave field of large amplitude mode-one waves having anl upstreamn
phase speed anLd a downstream group velocity. These mode-one waves breal( for obstacle
amplitudes well below the breaking amplitude predicted by the steady-state Long's model
solution (Lamb 1994).

When the linearized equations are solved (Baties 1979) in the miodel domain subject
to the nonlineax lower boundary condition

w = (1 +u)h'(x) at z = h(x), (3)

(u (l' n w are the horizontal and vertical velocity 1 )erturbatiolis) rather than the linear one

w = h'(x) at z = 0, (4)

the behaviour is almost identical to the linear solution.

The similarity of the obstacle and depression cases, for which the depth averaged
flow aud stratification are increased and decreased respectively, together with tlhe approxi-
mately linear behaviour which occurs when the nonlinear terms in the governing equations
are switched off, suggest that it is the lionlinearities in the governing equations which are
resp)onsiblc for the nonlinear wave generation. In order to investigate this a truncated
spectral model has been developed in which the obstacle is removed mad forcing terms,

used to al)proximate its effect, are added to the governing equations. This model qualita-
tively reproduces the behaviour observed in the full nonlinear numerical model. It has the
advantages over the full nonlinear model of allowing one to turn off different terms (e.g.,
forcing of mode-two waves) enabling one to investigate the cause of the behaviour, and it
allows l)araineter s~pace to be more rapidly explored.

The Spectral Model

In the numerical model used in Lamb (1994) a forcing term was used to quickly
accelerate the flow from rest in order to mimic an impulsive start. Here, the forcing term
is dr(lopped and it is aSsui.led that initially the isopyclials are fiat and the velocity field is
irrotational with an upstream flow speed of one. In terms of the total streamfunction z +-ifr
the model equations can then be written as

•0•2,J = Vb2 + (., + j (V+ , V2 ./), (5a)

b, = -N 2  + (0, b). (3b)

Here

where g is the gravitational constant anld pt(1 ± p(z) + p'(x, z, t)) is the density. The
density peerturbatiom p' is initially zero and

N2
P (7)
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J is the Jacobiam operator
J(Q, R) = Q.R 2 - QýRr, (8)

With a rigid lid at z = 1 and a lower boundary at z = h(x) given by (2). The inviscid
boundary conditions are

I(,1,t) = 0. (9.)

-,/, (1 + ?/,)1,'(x) at z = h(x), (9b)
•/,b 0 as x --+ ±t00. (9c)

The first step iil deriving the spectral model is Lo place the lower boundary at z = 0
and replace the lower boundary condition (9b) with the linearized lower boundary condition

'(X, 0, t) = -I4(x). (10)

New dependent variables T' and B are introduced via

!,= + + h(x)(z - 1), (i.)

b = B - N 2 h(x)(. - 1). (11b)

The boundary conditions for kP are

IP(X,0,t) = P(.Z, 1,t) = 0. (12)

The governing equations bmecolie

0• = .- (1 ±;,.(,:)) o V2•' + B. + J, Q 2 'I')+ h"(x),

-(h.'(x) + N 2 1h'(3, ":)+ - h'(x)h"(x)) (z - 1)

+ (h'(.r)V2 -- h'"(x)'11)k(z - 1)(13)

B, + (1-h(x))B- (-+ Ih(x))N' ql + J(T,B)

+ (h'(x)B, + N2hW'(x) % )(z - 1). (13b)

One effect of the transformnationi has bcell to transfer the forcing floill the bounldary coil-
ditions to forcing terms in the governing equations (McIntyre 1972).

These rather comlplicated equations involve a number of nonlinear terms which are
quadratic in h, q, and B. Dropping those which involve h and are zero away from the
obstacle results in a mucli simpler set of equations, namely

-V,= + B, + J(N',)V q,- (h.'"(x• + N''(x)) (z - 1), (14,,)
at Ox

B, = -B. - N 2"4,, + J( I',B). (14b)

3
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These equations are the samne as the original equations (5) for V) and !, except for the
forcing term in the vorticity equation. Linearizing (14) give., the linear p)roblemn

SV -- - V2' + B , - (h"'(x) + 2hI'(x)) (z - i), (15a)

B, = -B,. - N 2 ,p'. (15b)

The ititial conditions for (13), (14) and (15) are those of irrotational flow and fiat irsopyc-
nals. In terms of qI aud B these are

VB'(x, z,0) = -I."(;r)(z - 1), (16b)

The solution of (15)-(16) with the boundary conditions (13) recovers the classk.al linear
solution (e.g., Babnes 1979).

The advantage of using k' and B as dependent variables is that %P hac homogeneous
boundary conditions. In addition,

B(x,1,t) = 0, (17)

and, for the linear problem
B(x, 0,t) = -ith(x - t). (18)

which becomes zero near the obstacle for laxge time. This latter equation does not hold
for the nonlinear problems. With a l)articular choice of terrain following isopycnals as
initial conditions, the initial condition and, for the linear problem, the bottom boundary
condition become zero.

The spectral model is obtained from equations (13) by setting

00E= a"(x't sin(nr') (19a)

00

oo b,,(z, t) sin(7 orz), (19b)

Z - 1 - -2E .in(,rz) (l7c)

(1,, aid b,, are the amplitudes of then mode-n horizontal-velocity and density waves. Sub-
stituting (19) into (13) results M coupled PDE's for the ,,' and b,, 's. The model is then
trxuicated to M modes by eliminating all terms involving (L,, alnd b,, with n > M. The
restulting 2M coupled nonlinear equations comprise a new approximate nonlinear model

which is referred to as the spec(tral model. The corresl)ondling model based on equations
(14) is called the simple spectral model. Solutions of the two models are very similar (at
least for the paaamneter values comsid(ered). For F > 0.5 we set MA 3. The behaviour of
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the first two modes, which is of most interest, is not significantly different if more modes
are included. The statement that mode-n is not forced means that both the forcing term

proportional to h"' + N'n' + hh"' - ,'", is set to zero and that a,, and b,, are initially
zero. In that case, in the absence of nonlinearities, a,, and b,, would remain zero. The
equations for the a, and b,, are solved numerically using second-order differencing ill tiime
and space with a leapfrog time step)ping scheme.

Results

Using obstacles given by (2) there axe three parameters in the prob)lem: the obstacle
amplitude a, the obstacle half width D, and the Froude number F. Consider the case
F = 0.666, a = 0.12 zand D = 0.17. These are the samine parameter values used for the
obstacle case shown in figure 1. In figure 2 the spectral model results are comnl)axed with
the numerical model results at t = 100. The mode-one and two horizontal velocity waves
a1 antd a2 are shown. For the numerical model a,, is given by

- - + a,, t) t cos (n) (20),,=4x)x)

where u is the total horizontal velocity. Away from the obstaleh a,, can be identified as
the nio dc.-r horizontal- velocity wave.

The behaviour of modes one and two are qualitatively similar in the numerical and
spectral models. Upstream of the obstacle (a < 0) the amplitude of the mode-one waves
initially decreases as the olbstacle is apl)roached, but then increases dramatically. This
increase is referred to as growth of the upstreamu waves. Linear theory predicts a monoton-
ically decreasilng amplitude (figure 1). Downstream of the obstacle, linear theory predicts a
statimoary lee wave field with a wavelength of 1.79 and approximately constant amplitude
between x = 0 antd x . 50. Both nonlinear models sjhow waves with almost twice this
wavelength. Some of the waves are considerably larger than the linear waves, Both mod.els

include a nonlinearly generated train of large amplitude mode-two waves. There is one
large mode-two waves for each mode-one wave upstream of the obstacle.

While there is substantial qualitative agreement between the two nonlineam model.s
there are differences. The waves in the numerical model are significantly larger than those
in the spectral model, prestunably because the linearized boundary condition unideres-
timates tlh forcing dhue to the ob:;tacle. In addition, the upstream propagating waves
produced by thw spectral model include a small, negative columnar disturbance.

Solutions of the simple truncated model based on (14) are remarkabl y similar. For
the above case the biggest difference by i = 100 is that the last two upstream propagating
mode-onei waves to have left the obstacle are about 25% smaller.

WIWhenI only the imiode-one wave is forced the behaviour is qualitatively similar to tilt

base case, although the growth of the upstream propagating waveis significantly reduced
(by aboout two thirds). Interestingly the largi mode-two waves between x = 0 and .x z 30
are virtually identical to those in the base case. When only the mode-two wave is forced the
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I
mode-one waves are greatly reducod in amplitude everywhere while the niodee-two waves
are very similar to the linear waves. This shows that thet mode-one forcing is the key
forcing term and that forcing of the mode-two wave enhances the nonlinear behaviour.

Summary

Two spectral models have been derived based on the idea of linearizing the lower
boundary condition and transferring the wave forcing irom the boundary Condition to
the governing equations. The simplest of the two is based on (14). These equations ar(e
identical to the initial equations (5) with the. addition of a forcing term in the vorticity
equation. After the Fourier Series expansion (19) aid the truncation to a finite nmmiber of
modes the forcing terms are zero on the upper and lower boundaries anid have the effect of
forcing a finite numnl)er of waves. These forced waves are identical to the waves generated
in the linear problem. The full spectral model is more complex and includes terms which
model some of the effects of the nonlinear nature of the lower boundary condition. For
example, ill (13) factors of 1 + h(x) appear which model the increased depth averaged flow
speed and stratification over the obstacle. The full spectral model improves the agreement
with the full nonlinear model, but not very significantly.

The qualitative features of the nonlinear wave generation process for Froude numbers
between 0.5 and 1.0 are reproduced by the spectral model. Both mode-one: and mode-two
waves are nonlinearly generated when only the nmode-one waves are forced. This shows that
nonlinear interactions among the mode-one waves are directly responsible for the mode-
two wave generation. This occurs over the obstacle at the upstream edge of the mode-one
lee-wave field. The mode-two waves then interact with the moide-one waves. This results in
growth of the upstream propagating mode-one waves and also in a lee-wave train of mode-
one waves which are buth larger and longer than the stationary, linear, mode-one lee waves.
These large mode-one waves reduce the obstacle amplitude required for wave breaking.
Direct forcing of the miode-two waves amplifies the nonlinear behaviour, in particular the
growth of the upstream l)propagating mode-one waves, but does not qualitatively change
it. The increased mean flow speed and stratification strength over the obstacle is not of
fundamental importance for the obstacles and Froudie numbers considered here.
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INERTIA-GRAVITY WAVE PROPAGATION IN A JET REGION

M.-Pascale Lelong and Timothy J. Dunkerton
Northwest Research Associates

Bellevue, Washington USA

Internal gravity waves are a common feature of middle atmosphere mesoscale flows; they
are known to play an important role in transporting momentum, heat and constituents in the
earth's atmosphere. In the lower stratosphere and upper troposphere, near-inertial waves
dominate the gravity wave spectrum, These inertia-gravity waves (henceforth IGW) dis-
tinguish themselves from high frequency gravity waves by their short vertical wavelength
(,-1-2 kmi), large horizontal scale (-,200-1000 kin) and long periods (several hours or more).
Whereas the high-frequency part of the gravity wave spectrum tends to saturate principally
via convective instability, it is believed that IGW undergo breakdown via Kelvin-Helmholtz
instability. The relative importance of the ensuing mixing, however, remains to be estab-
lished,

Here, we present the results of some high-resolution, three-dimenxsional numerical sinu-
lations designed to address the issue of mixing efficiency following the breakdown of IGW.

The numerical model is a three-dimensional, pseudo spectral code for the Navier-Stokes
equations with the Boussixiesq approximation. Boundary conditions are triply-periodic. The
time-stepping is performed with a second order Adamns-Bashforth algorithm. A third or-
der Adains-Buaslforth version has also been implemented. The computational domain has
horizontal dimensions of 1000km and vertical dimension of 10krm. A spectral resolution of

12 8 ' wavenumbers is typically used. For the cases involving a mean flow, sponge layers
at the top and bottom domain boundaries are used. These layers effectively ensure that
waves propagating upward will not reenter the computational domain through the bottom
boundamy.

The propagation aad breakdown of an IGW is first examined in a shear-free environeient.
The problem is then generalized to investigate the propagation characteristics of IGW in the
presence of a mean zonal jet U(y, z) where y and z are longitudinal and vertical coordixate.;
respectively. Linear as well as nonlinear cases are considered. The breakdown is also examn-
imied as the horizontal orientation of the wave relative to the jet is varied.

This particular problem constitutes one aspect of some ongoing research on the role of
inertia-gravity waves in stratosphere/troposphere exchange.



LAGRANGIAN COORDINATES, GRAVITY WAVE SPE( -RA, AND THE DICHOTOMY
OF BUOYANCY SUBRANGE THEORY

J. Weinstock
Aeronorny Laboratory, NOAA
325 Broadway
Boulder, CO 80303

ABSTRACT. It is shown that Lagrangian coordinates arc equivalent to use of particle.
propagators. Both account for nonlinear advection in the same way. Relatedly, it is found
that Stokes drift has an equivalence to solution of the Navier-Stokes and immediately reveals
the structure and sigrificance of perturbation theory -- inluding quasilinear, weak wave
interactions, and so-called strong wave interactions These elementary relations are then
applied to derive the vertical wavenumber spectra otroad band of random gravity waves,
the related scale dependence of diffusivity, and the connection of this spectrum and
diffusivity to buoyancy subrange theory.

1. Introduction

Lagrangian coordinates provide a convenient and general tool for understanding
and calculating the nonlinear behavior of gravity waves (e.g., Andrews and McIntyre, 1978;
Weinstock, 1976; Allen and Joseph, 1989) -- including gravity wave saturation and spectra.
The first part of our article concerns such coordinates. The purpose is to show that
Lagrangian coordinates are entirely equivalent to particle propagators, and, relatedly, that
Stokes drift has an equivalence with solution of the Navier-Stokes equation and immediately
reveals the structure and significance of perturbation theory -- including quasilinear theory,
weak wave interactions and the so-called strong wave interactions. Much of this discussion
appears in a recent book (Weinstock, 1993) to which we refer for proofs of some relations.
One motivation for stressing the relationship between Stokes drift and solutions of the
Navier-Stokes equation is to take advantage of recent interest of the former to help explain
our previous work with the latter. The other motivation is that the former provides a
simplification of the latter.

The second part of our paper is to use these Lagrangian considerations to calculate
the spectrum of a broad band of random gravity waves, the related scale dependence of
diffusivity, and the connection of this spectrum and diffusivity to buoyancy subrange
the ry. Emphasized is that the scale dependence of the diffusivity is more than a theoretical
cowfept but has a major influence on transport in stably stratified turbulence. Also
emp'hasized is how this scale may help resolve a defect of buoyancy subrange theory.

2. Lagranglan Coordinates and Particle Propagators

To demonstrate the equivalence between Lagrangian coordinates and particle
propagators, and how they help solve the Navier-Stokes equation, we begin with that
equation in the familiar form:

a Vp+_ qp'
C•t Po+E-- Po0+ Fý]

(I)

where 9- a(Rt) denotes the total (local) fluid velocity at position R at time t. p' is the
pressure fluctuation, p' is the particle density fluctuation, p, is the average background
density, g is the acceleration of gravity,v is molecular viscosity, and• denotes a unit vector
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along the vertical direction. The small squares around the p' terms on the right side of (I)
denote that these terms are to be neglected compared with the nonlinear advection term,
Qý M . Therefore, advection is the only nonlinearity to be considered hereafter.

It is c-invenient to write (1) in the condensed form

.2 (2)

E (9,t V a - -- ( g t)

Pu Po

where F (P,tJ) simply denotes the sum of all the terms on the right side of (2), and is a linear
function of wave fluctuations. It is shown in App. A that a formially exact solution or (2) is
givell as follows;

9 (9,0) P= jRL(- L).O] + fdtlL&(t1-t), ti]

at (4)

Where P-[IL(-t),Ol denotes the initial value of p ()&,t) with g replaced by the Lagrangian
coordinate WL-0) and the second tenn in (3) is the t, integral oif F (9,t I) but with the usual
coordinate R roplaced by the Lagrangian coordinate. The Lagrangian coordinate IRL(t) is
defined by (4) as the solution of Newtons equation for the motion of a particle, or air parce~l. 1RLWt
in the fluid velocity field P_ The (Lagrangian) coordinate Rift) is expressed in termis of the
wave velocity field by eqn. (4 ). The minus t occurs because the -A-grangiuvi operator is
a/at + 1LV rather than a/at - q. V and displaces particles backward in time.

Whiat (3) states is that the (nonlinear) solution of the Navier-Stokes equation is given
exactly by the solution of' the linearized equation but with the coordinate LZ everywhere
replaced by a Lagrangian coordinate RL(t). Since linearized solutions are often fairly easy
to obtain, (3) provides a general mecans of extending such (linear) solutions to nonlinear
ones. Coriespondingly. (3) combined with (4) implies that the Lagrangian velocity 3A[RL(t), t0
is the basic quantity needed to solve the nonlinear Navier-Stokes equation -- since it
determines RL(t).

Wha-t we particularly wish to emphasize is ihat Lagrangian coordinates arc equivalent
to use of a particle propagator. To denionsirate this, we show that the ULagrangian velocity q I LWt) t]
can be written as

where, physically, ý,is just the displacement of' a particle from its initial position. The

symrbol__ý was used in a related conjt~extby _Andrews and McIntyre (1978). The superscript+
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on V is to note that, in the case of incompressibility, Y in (5) operates only on 9. (9,t) to its

right and not on ;- --

A pedestrian way to verify (5) is to expand UI[RL(t), t] in a Taylor-McLauran expansion
about 0l(t) = R and, at the same time, to expand the exponential of (5) in a power series

in Y+, and, afterwards, compare both sides of (5) term by term.

It is the exponential term exp (ý. Y) that is referred to as a particle propagator.
According to (5), this propagator simply states that the usual Eulerian coordinate R is
everywhere replaced by the Lagrangian coordinate R•L(t). In other words, the propagator is
equivalent to (being in) Lagrangian coordinates. The advantage of the propagator is that
the transformation (to Lagrangian coordinates) is given in an explicit mathematical form
which readily allows for mathematical manipulations (so as to derive nonlinear wave
properties in a fairly simple way). For example, the straight-forward power series expansion

of the propagator in ascending powers of 4 " Y yields perturbation theory, and immediately
determines Stokes drift and other results -- as shown in the next section.

3. Stokes Drift and the Navier-Stokes Equation:

To show that Stokes drift is closely related to a solution of the Navier-Stokes
equation, and, at the same time, yields perturbation theory we take the straighl..forward
power series expansion of the exponential propagator (5) as follows:

0, L1•W,) t] 919,~t) + 4- 1-4- .~)V

Quasilinear Weak wave . ,interaction (r •••

+ y! 4~ -ý Y) Y_ T'! (;)4 •V4u.. (7)

Hligher order terms

where we again use - u(R,t) to condense the notation. These ordered terms constitute
perturbatiomi theory.

Before discussing the various terms in (7), we note that [L •j)jt] QR~t)

is the difference between averaged Lagrangian and Eulerian velocities, which, by definition,
is the Stokes drift; here the superbar denotes a suitable average over space or time.

Therefoic, the Stokes drift _s is the sum at all the ~erlus on the right side of (7). It is
given by (8)

u=- VP &()tI- 7j=Kvi+~ v + K Y) V) V)Vu

4. Stokes Drift, Perturbation Theory, and Time Secularities

Each of the higher
order terms can be shown to have a time secularity -- the tird term varying as t, the fourth

term as t2 and so on, as, for example, L- -- vo that after a sufficient
tinit' has elapsed each one of the infinite number of higher order terms will exceed the first
and second terms in magnitude. What saves this expansion is that the sum of this infinite

i

3
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number of termsi i. itself finite (just like, for example, the sum -is finite at
large t), It is this

sum that is referred to as "syrong" wave interactions: It is equivalent to a re-normalization.
Let us next see what strong interactions yields for the gravity wave dispersion relation and
for the vertical wavelength spectrum.

5. Strong Interactions

To derive a nonlinear dispersion relation from (7) we set P equal to a Fourier wave

component MJ exp (iXR.--iwt J where 4 is the velocity amplitude of the wave, k its
wavevector and w. its frequency. What occurs in the nonlinear wave equation (3) with (4)

1 9[(91M t] 0 Cxp(ý 'Y' for which (7) gives us (e.

1976; Dupree, 1966 or 1967) the APFOxiMAITi/V

exp( P -[e xp (io)i t-t t. v lJ] Mkexp (ij.k.R + io lt) (10)

where Q is a diffusivity tensor and (OA is a nonlinear frequency shift.

Returning to (12). we note that a similar expression between diffusivity and mean
square particle displacements was used in the theory of Brownian motion (Einstein, 1926),
and, afterwards, to describe atmospheric diffusion (Taylor. 1921). fMfo (/1o oxe C47 0641P

(o -4 O+(1)i6,.t.i . (13)

LINEAR NONLINEAR
DlI•W'eI(StOV )?C.T/iN DI 'rEsION RCLA tOi

However, the validity of.( 3) is limited, because lf the

approximation of neglecting nonlinear loss terms. Fom- q,,t.,s4 ,040 Cn,4,:er,

2 2
ik++Ii k'+d (14)

, a A- .a. /. ec

Equating the real and imaginary parts of both sides of (14) there results

(u) + CoA)2 = k2N 2/k 2, assuming 2kJI >> 1, and P-1k, >> I, with growth rate P given by

=(2-l)' - k2dw4k (0)+(OA1whcre the absolute value occurs because we are only

concerned with wave propagating energy upwards, and, therefore, with vertical phase speeds

that are negative; i.e., (ok. = - IclkA. It can be seen that the growth is reduced by the

nonlinear diffusivity terni in d. and that the frequency is shifted.



6. Spectral Equation

To begin with, we nftd that evolution equation for an upward propagating spectrum

of gravity waves can be written as

dF(k,, -9) 1rS-ý - ' D, ]F~e kZ,•)

Hz (15)

where F(k,,-g) is the spectrum of horizontal velocity fur a bioad band of randoun gravity

waves and .k'denotes the vertical diffusivity tensor. A formal derivation uf (15) has been
given (Weinstock, 1990). AAW40,,UO~lz-•,,dag([/ t¢ /•'~~•z,•f:

5e. I

7. SCALE DEPENDENT TRANSPORT

It was pointed out in the previous section that die diff'sivity caused by gravity waves,
depends on the scale of the matter being diffused. The purpose of tlis aind the next section is to
point out that this scale dependence has a major influence on veIaieal transport in stably stratified
fluids, and, additionally, provides a possible explanation, and coirection ofa defect of buoyancy sub-
range theory (Lumley, 1964; Weinstock, 1978, 1985).

We begin with L , the vertical element of diffasivity q uefined by (12). For the case
of a gravity wave band whoe velocity is

is the Fourier amplitude at height z of a gravity wave, with wavevector k and hiequency
co -- the "- element of (12) can be shown to be given b-(Weinstock, 1916;
1993). ,N .Wc:

D (h• ,,. .

where • is an average wavevector of the band told it is reqtiired that t -1h :,i " -
For simplicity, we use in (17) the separability approximation $(A-, c1) = F(i) -/. )
(Garrett and Mu ak, 1975) with the frequency spectrum normalized to unity and Cxp'essed
as s2(•)
In that case, tie • integration is elementary and (I"l) reduces to

-; .LT,(,,YZ / rij / .,FY,•,

in the limit of IQ2 - C' .' - V. V,
Finally, with k, restricted to lie in the saturated, or equivalelly, the strong wave interaction region o;f
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the spectrum we substitute (16) in (18) to obtain the desired diffusivity expression

(1W 7) ( ""'Z

where kR is refened to as the bouyancy wavenumber, the factor (/5)" I comes from the
estimate NO -- 2410, Ci,. 0.7.- in the free atmosphere and 0 is the
latitudinal angle. Here, the tvertical) scale of the mass being diffused is represented
by kLý /k1h.
It can Me seen in (/ q) that D• increases as L.j with increasing
tZ -- a fairly rapid increase. This equation re-states the logical and widely-known idea

that atmospheric diffusivity generally increases with the size of the object being diffused: Logical
because the larger the diffussee the larger the atmospheric fluctuations that can diffuse it.

Equation (I9) also has the well-known ,/ 2 behavior associated with diffusion is
stratified turbulence. The dimensionless factor mdftiplying .IAN' is sometimes reffered to as the
efficiency factor. This factor is of interest in itself (it has been hicasured) and so we ve-write (j9)
as

- (20)

Since HIV - I it follows that " ELj . I evenif tL is many times as iarge
as the bouyancy length L ,z -- )-,/.

We consider the following examples:

In the niesosphere, LK .5"o and Ii 0L) hf * , so that L- F 3 for a
diffussing mass whose vertical scale is as large as 7000in. The atomic oxygen layer is such a mass.

In the uppec ocean typical values for Liz and o cre lin and 20kin, resptectively, so that
Eft < 0.13 for L,/t as laige as 100; i.e., for scales 100 thnes the buoyancy
length,

Roughly speaking the efficiency in (2 !) does not exceed unity unless L Z..4.
exceeds 103 in the upper ocean and 20 iii the mesosphe..e. Such a relatively small efficiency is
consistent with oceanic observations (e.g. Oakey, 1982; Greg, 1987).

In sum, strong wave interaction theory is consistent with obserations of b.Ath h. spectra
and vertical transport in oceansd)Another theory that predicts a O SOI)1,1uoya.cy ,ubrage

theory (Lumley, 1964; Weinstock, 1978, 1985). We next compaie the two theorieswaz4in
particular, explain a seeming inconsistency of *. theory with regard to the diffusion efficiency it
predicts. __tthea it•

4!
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8. BUOYANCY SUBRANGE THEORY - A DICHOTOMY

For a brief critique of the status of buoyancy subrange range theory we recall that Lumley
(1964) predicted E(k), the scalar kinetic energy density spectrum of toif stratified turbulence, to

be 15(k) - &(k) 'kV (22)

Where k/' nacte k -t 4i k - -1 /. 5 is the Kolmogorov constaný d e(k) is the spectral transfer rate. The same spectral
variation was later found for the temperature spectrum (Weinstock, 1985). These predictions are
consistent with observations of temperature spectra (e.g., Gregg, 1977) and kinetic energy spectra
(e.g., Gargett et al., 1981). Nevertheless, (22) differs substantially from oceanic spectra when k is
very much smaller than kR the so-called weak wave interaction region -- (22) varying as k-3 wheweas
oceanic spectra vary as k -2 when kh/'k » 2. Relatedly, (22) violates the
underlying locally inertialcondition 9 k,- •.I upon which itL(22)1 is based.
Thirdly, as pointed out by Holloway (1989), foie takes 'k-j * (' then (22) gives
values of Ef" which greatly exceed unity when kz/h : /-........-in seeming
disagreement with oceanic measurement% of Eff (e.g., Oakey, 1982; Greg, 1987). These
discrepancies and violation were removed (Weinstock, 1978) by explrcitly including a gravity
wave influence not accounted for in the original theory. With this inclusion, it was shown that e(k)
is approximately given by

r )or h -

ca id Rf is the flux Richardson number. It can be seen that this modified E(k) satisfies the locally
inertial condition when 1, << 'i . and,
additionally, when combined with (22), no longer varies as k-3 in the weak wave interaction region
of - 2_, . Furthermore, the diffusion efficiency hardly exceeds unity
when t-, .'k * . However,
(23) does nob always give a k-5 spectrum in the buoyancy subrange the k
region ,1 . 4 V k P'ý. for oceans.

To put this all together, we have two buoyancy subrange theories; (22) and (23). The
former theory always gives the observed k-3 specUum in the buoyancy subrange but also implies
much too large a diffusivity efficiency. The latter theory which includes gravity waves, implies a
more reasonable diffusivity efficiency but does not always give the k-3 spectrum. We note that one
would have a complete and inconsistent theory if we could combine the correct features of each
theory -- use (22) for spectra and use (23) for diffusivity considerations. Such a pos, sibility may be
justified by the fact that both theories make the wrongfull assumption of isotropy at l-, << .
In actually, at such small k, the spectrum is dominated by gravity waves and vortical modes and is,
therefore, extremely AviSo~'oPriIndeed, (22) resembles what is expected for horizontal motion and
spectra whereas (23) more resembles vertical motion and spectra; i.e., if we write

r.h) .= Elfý) + E•() ........ where E ih(( k PNt, EL(l,)---

respectively denote the horizontal and vertical parts of E~k, then (22) becomes

when k- -•- Furthermore, and most importantly, (24) no longer overestimates
the diffusion efficiency since that efficiency pertains to vertical motion whereas (2#), and (22),pertain to horizontal motion (v/e Wic I ,- •< lrz. A more fundamental approach to stratifiedturbulence is to divide the spectral balance equation into horizontal and vertical components in the



manner done by Riley et a). (1981) for the fluctuation equations and for the mean square energies.
That would be a formidable problemn involving as it would wave-wave ineractions.

Because of this complication,. one can view the buoyance and subrange theory (22), or more
correctly, (24L), as being nothing less than remarkable in that it correctly predicts so much of both
kinetic and potential energy spectra by an elementary consideration of buoyance. Of course, we
agahi note, one need have in mind that, (22) can pertain only to horizontal mnotion and not to vertical
motions when k '<< IFZt may be possible to prove this a priori from the horizontal
energy balance equation.

2Nt)
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Internal Solitazy Waves with Oscillatory Tails
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Abstract

Traditionally internal solitary waves have been conceived s genuinely isolated
waves which decay to zero in the far-field. Recently, however it has been recognized
that, quite commonly, this is not necessarily exactly so, and intei.al solitary waves may
not be truly isolated, and instead decay to non-zero small-amplitude oscillations in the
far-field. This occurs generically whenever the linear spectrum contains wave phase
speeds which can resonate with the solitary wave speed. For internal solitary waves this
can occur via mode-mode interactions leading to the conclusion that only mode one
internal solitary waves can be truly solitary. Analytical methods for determining the
structure of these non-local solitary waves will be reviewed.

§1. Introduction

Solitary waves are traditionally conceived as localized disturbances of permanent
form and propagating with constant speed. One of the classical prototypes is the
solitary--wave colution of the Korteweg-de Vries (KdV) equation

U +6uu +U =0 (1)

given by u = uo(x - c0t) where

uo(z) = 2y2sech 2yx, co = 472. (2)

Importantly in the present context note that in the tail of the solitary wave, as I x -x 0,
uo(z) - 47 2exp(- 27 I xj ) . Thus the KdV-solitary wave (2) is a genuine solitary wave,

with exponential decay in the tail regions. Further, the KdV equation has been invoked
to describe small-amplitude long water waves in the absence of surface tension, and
more generally small-amplitude long waves in a wide variety of physical systtems
involving shallow fluids, including density-stratified fluids (e.g., Benney, 1966).

However, it has recently been recognized that so-called solitary waves may not
be genuinely localized, and in fact are accompanied by co-propagating oscillatory tails
which persist with non--zero amplitudes (see, for instance, the reviews by Boyd, 1989,
1990, who h. s calld these waves "nauuopteronis). Tis situation may occur -in a varety
of physical situations including the case of solitary water waves in the presence of
surface tension, where a combination of numerical work by Hunter and Vanden-broeck
(1983), Vanden-broeck (1)91) and Vanden-broeck arid Dias (1992), and analytical work
by Amick and Kirchgassner (1989), looss and Kirchgassner (1990), Beale (1991), Sun
(1991) and Dias and looss (1993) has lead to the following general picture. In the
absence of any surface tension, there exist solitary water waves of elevation, which can
be described by the KdV--solitary waves (2) in the limit of small amplitude. However
when the Bond number 7 (measuring the effect of surface tension) is greater than 1/3,
these exist solitary gravity-capillary waves of depression, which can again be described
by the KdV-solitary waves (2) in the limit of small-amplitude. But when the Bond
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number r lies between 0 and 1/3 there exist two kinds of solitary wave; one kind
contains waves of both depression and elevation with decaying oscillations in the tail
region; the other kind consists-of a solitary wave core of elevation accompanied by
non-decaying tail oscillations. It is this latter non-local solitary wave with which we
are concerned here.

The reason for the appearance of the non-decaying tail oscillations when
0 < r < 1/3 cart be readily understood on physical grounds from the linear spectrum.
Solitary water waves are supercritical when r = 0 ; that is, their speed is greater than
the linear long-wave speed, which is the maximum phase speed of small-amplitude
sinusoidal waves. Hence it is not possible for sinusoidal short-wavelength water waves
to co-propagate with solitary water waves, and so no tail oscillations are found. A
similar situation occurs when r > 1/3 since now the solitary waves are suberiticial, and
all small-amplitude sinusoidal waves are supercritical. On the other hand, when 0 < r
< 1/3 solitary waves of elevation are supercritical, but can co-exist with
small-amplitude sinusoidal capillary waves with the same phase speed. It is the
existence of this resonance that is responsible for the non-decaying tail oscillations,
although it is often a delicate task to establish that the amplitude of the tail oscillation
is in fact non-zero since the mechanism involved is intrinsically nonlinear.

Similar considerations can be applied to other physical systems to determine
when non-decaying tail oscillations might be expected to co-exist with a solitary wave
core. A simple example is the singularly-perturbed KdV equation

ut + 6uu + u ZX + C2u XX = 0. (3)

which has been proposed by Hunter and Scheurle (1988) as a model for gravity-capillary
waves when r is just less than 1/3 . Note that for 0 < r < 1/3 the KdV equation (1)
cannot be expected to be a valid model since it is derived on the assumption that only
long waves are present, and cannot account for the short wavelength oscillatory tails.
The linear spectrum for sinusoidal waves of phase speed c and wa. enumber k is

c = -k 2 + (2k4. (4)

By considering the limit k, -* 0 we see that solitary waves will be supercritical with
positive speeds. But then there will be a resonance with small-amplitude
short-wavelength waves whose wavenumber k z c-1 as c -- 0 . Interestingly, in this
limit c -+ 0 the amplitude of the tail oscillations is exponentially small (but non-zero),
and the calculation of this amplitude requires the techniques of exponential asymptotics
(see, for instance, Pomeau et. al., 1988, or Grirashaw and Joshi, 1994) who use the
technique of Borel--surmunation to calculate the exponentially small quantities. Indeed,
it can be showen that as e -- 0, the non-local solitary wave solution of (3) is given by

V - U(X)0 + bexp[--r ] sin [.•Ix ] - 6 (5)

where we are using the frame of reference in which the wave is stationary, and u (x) is

the KdV-solitary wave (2). The amplitude b and phase 6 are related by the relation
b cos6 ~ 62.74, so that (5) defines a 2-parameter family with parameters y and 6 say.
Thc expression (5) agrees with the numerical results of Boyd (1991). Note that (5) is a
symmetric non-local solitary wave, and hence the tail oscillations must be supported by
energy sources and sinks as I xJ -4 o. Here the group velocity for waves of wavenumber
k 5 0 is 2c-2 and hence there must be an energy source as x -4 - ® and a sink is
x-+ co. If instead, equation (5) is solved with a localized initial condition, the solution
will consist of a solitary wave with co-propagating oscillations to the right only
(Benilov et. al., 1993). Such non-local solitary waves cannot be exactly steady since
they continually lose energy to this radiation.

I1



§2. Intemal waves

Akylas and Grimshaw (1992) have explored the implications of these ideas for
solitary waves in density-stratified fluids of shallow depth. Here we summarize their
results, and then discuss some conceptual models which illustrate the basic ideas. First
we note that in the absence of an underlying rotation the linear spectrum typically
consists of an infinite set of modes for each of which the phase speed of linear long waves
is a monotonically decreasing function of the wavenumber k (see Figure 1). For each
wave mode of mode number ns and linear long-wave phase speed c. (n = 1, 2. 3....) it
might now be expected that these exists a supercritical internal solitary wave (i.e. its
speed is greater dhan c) which in the small-amplitude long-wave limit is governed by
a KdV equation (e.g. Benney, 1966). For the mode n = I , this is indeed the case since
a solitary wave of speed greater than c, cannot resonate with any small-amplitude
sinusoidal wave. However, for the modes n > 2 there exists a resonance with
short-waves of the modes n - I , ... , 1 . For instance, an internal solitary wave of
mode number n = 2 will have a resonance with mode number 1 and wavenumber k1
(see Figure 1). Thus in general internal solitary waves of mode number n > 2 are
non-local and are accompanied by co-propagating sinusoidal waves of mode numbers
less than n . Indeed, Vanden--broeck and Turner (1992) have confirmed numerically
that mode-2 internal solitary waves are accompanied by mode-1 oscillatory tails. A
similar situation occurs for equatorial Rossby solitary waves (Boyd, 1989) add in other
physical systems.

C

C 4

jk

Figure 1: A schematic plot of the linear spectrum for internal waves.

Akylas and Grimshaw (1992) adapt the Borel--su-nmration technique of Pomeauet. .a'(1988) (see also Grimsh-aw. ad josh;, 1.994) to calculate the amplitude of theoscillatory tails since in the limit of small-amplitude solitary waves, these ar'eexponentially small. We shall not desc~ribe the method here because of its complexity
but will state the outcome. In the next section, however, we will outline the procedurefor a conceptual model. To describe the salient features of noD -local internal solitarywaves we first consider the linear spectrum for waves of phase speed c and wavenumber
k. The modal equations are

(Po0)., + oJ •- k2 = 0 , 0 ý z < h, (6a)
¢ = 0 , z = 0 , h . (6b)

Cl1

C.....
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Here the modal function is O(z) , p (z) is the basic density field, N2(z) = -gpojPo is

the buoya- y frequency, and -the fluid occupies a channel of height h . In the
long-wave limit k 0 , these define an infinite set of long-wave modes fn(z) , with

long-wave phase speeds cn , n = 1, 2, 3, ..... In general, for 0 < k < c, the modal

problem (6a, b) defines an infinite set of dispersion curves (see Figure 1). For a given
long-wave mode of mode number n (> 2), the resonant modes and wavenumbers are
obtained from (6a, b) by fixing c = e and solving for the wavenumbers k. There
exist n real wavenumbers k- 1 , k1 , 0 with corresponding modal functions on-l(z),

0.(z) , ¢o(z) where we note that C (z) f (z) . There also exist an infinite set
0 ~ 0 n

of pure imaginary wavenumbers which represent evanescent disturbances and these need
not be considered further.

It can then be shown that symmetric non-local internal solitary waves are given
by, keeping only the significant dominant terms, and using a frame of reference in which
the wave is stationary, . •rkn1

c asech2(ecyx) f(z) + b7exp-2 f sin(k X1 - 6) ()

Here O is the stream function and c is a small parameter defining the
small-amplitude long-wave limit. The first term in (7) is the leading term in an
asymptotic expansion in powers of C2 which defines the solitary wave core. The
amplitude a of the solitary wave is proportional to 72 by a well-known formula
involving integrals of fI(z) (Benney, 1966), while the speed of the solitary wave is
asymptotically given by cn + f 2v where v is likewise proportional to 72 . The second
term in (7) is the leading term in the exponentially small tail oscillation for the
resonance with mode n - 1 . There are similar but exponentially smaller terms
corresponding to resonances with modes n - 2, ... I . The amplitude b and phase b
are related by b cos 6 = C_ 1 where Cn 1 is a numerical coastant. Thus (7) defines a
two-parameter family of non-local solitary waves with parameters 7 and 6. There is
an obvious similarity with the non-local solitary wave solution (5) of the singulaxly
perturbed KdV equation (3).

§3. A model Wstem

A conceptual model for non-local internal solitary waves is a coupled
KdV-system. In the frame of reference of a wave of speed c, this is

-cu+3u2 +u + (pv +quv+ jrv2 ) = 0, (8a)

-(c-A)v+ 3U2 + v + A(pu- + ruv+ jqu2) = 0, (8b)

Such systems have b• m'n derived by Gear and Grimshaw (1984) for strongly interacting
internal wave modes, but here we shall re•ard the system (8a, b) as a qualitative model
for an internal solitary wave (the u-mode) interacting resonantly with sinusoidal waves
(the ti-mode). The system is energy-conserving with energy density j u2 + - tP and
tor linear stability we choose A > 0 . It is convenient to regard A as a coupling
parameter, and for A = 0 the linear spectrum has two modes, c = -k2 (the u-mode)
and c = A - k2 (the v-mode). Without loss of generality we choose A > 0 so that
there is a potential resonance between a long -wave u-mode, and a short-wave v-mode
of wavenumber k = k = A2 . For 0 < Ap2 < 1 the spectrum has the same
qualitative features and the resonant wavenumber k = {A/(1 - ,\p2)}1 . Interestingly,

0
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for Ap2 > 1 there is no resonance for the u-mode, and presumably there is then a local
solitary wave solution for this mode.

First we consider small-amplitude long waves and show that the u-mode
solitary wave is non-local with an oscillatory tail of v-mode sinusoidal waves. We
shall confine our attention here to symmetric waves. The asymptotic expansion for the
solitary wave core (u., v?) is given by

u~ ~ 2u + e4u +*....v. ~Or +..., c"~e 2c +±e4c + -.... (9a)
s 0 + s 1 0 1

where u = 27 2sech 2 C7X, c = 472, (9b)
0 0

Here c is a small parameter characterizing the solitary wave amplitude. This
expansion can be continued in powers of ( 2 without any oscillatory tall being detected.
This is because these tails axe exponentially small with respect to c and hence cannot
be found by expansions of the form (9a). To find the tail oscillations we observe thaL
u u ... , and v I, ... , are singular in the complex x-plane at x = *i2z/2cy,
S3ir/2 ., and this motivates us to consider the solution structure near these points.

Thus let

X r+ Z, (10)

so that as IczI - 0

u --2-_ A(q-6p)(q- lop) +... + 0(C2), (Ila)

v~-, (q-- 6p) + - + 0(02 ) . (11b)

Next we consider the inner problem in which u and v axe functions of the
complex variable z through the transformation (10) . The equations are then just (8a,
b) with x replaced by z, and we note that c is 0(f2) and so to leading order the
terms proportional to c may be omitted. The inner problem is to be solved with the
matching condition that (u , v) are given by (Ila b) as I z -4 in Re z> 0,
In z < 0, and the symmetry condition that Ira (u, v) = 0 on Re z = 0. We seek a
solution in the form of a Laplace transform

(u, v) f . exp(-zs)(U(s) ,V(s))ds (12)
where the contour ' runr from 0 to w in the half--plane Re (zs) > 0. A solution is
then sought in the form

(U, V) = E (a, b) n - (13)

Here a = -2 , b = 0 and more generally substitution of (13) into (12) and
1 1

term-by-term evaluation shows that as ZI -CO

('a, v) (~ l ( ,, V )z - (14)



where ('u, vn) (2n - 1)!(a , b) It is readily verified that (14) agrees with the

matching condition (11a, b)-. and in effect the Laplace transform (12) is a
orel--summation of' the asymptotic series (hla, b). Further, substitution of (12) and

(13) into the equations (8a, b) shows that as n - w, a . -pK(-k )"' b I (-k)-2 •

so that the series (13) converge only for IsI < I . Here we recall that k is the
0

resonant wavenumber {A/(1 - Ap2)}P and K is a numerical constant whose exact
value depends on A, p, q and r. It follows that (U, V) have a pole singularity near
s = ik , where

(p , -1)K(v, v) •(15)
U

The contour F must now be chosen to avoid the imaginary s-axis, and to be explicit
we choose F to lie in Re s > 0. Also the expression (12) cannot satisfy the symmetry
condition and must be amended by the addition of a sub*-dominant term so that,

(u, V) fr exp(-zs)(U(s), V(s))ds + ½ib(-p, 1)exp(-ik *z + ib) (16)

Here b , 6 are real constants to be determined, and we note that Iexp(-ik z) I is

smaller than any power of z-2n as IzI -i w in Re z >0, Im z <0. The symmetry
condition is now applied by deforming F to the axis Re s = 0 , and deforming the
contour around the pole at s = ik . We find that

0
bcos6 = rK. (17)

The final step is to bring the solution (16) back to the real x-axis using (10). Taking
account of a corresponding singularity at x = .- i;/2(7 we get, in x Ž 0,

(u, v) ~ (us, v) + b(--p, 1) exp(- (7rk /2c-y)sin(k x- 6) (18)
0 0

where we recall that (us, v) are given by (9a, b) and define the solitary wave core.

Note the similarity of this expression with the result (7) for internal solitary waves
obtained by Akylas and Grimshaw (1992).

§4. Algebraic tail oacillations

The analysis of §3 was for small-amplitude long waves and we showed that the
tail oscillations are then exponentially sw.ll with respect to a parameter chaxacterizing
the small-amplitude solitary wave core. Here we show that when tWe solitary wave core
is of finite-amplitude the tail oscillations are algebraically srall with respect to the
coupling parameter A,. Suppose then that 0 < A << 1 , and put

0 0

it is readily seen that

(u, v) = (2Msech 2 /Ox.0), cO = 491, (20)

corresponding to a u-mode solitary wave. Note that in comparison to (9a, b) c = -'y•
Substitution of (19) into (9a) show. that

-C 0 0 U u1 +1 -xx PV O+ + qu 0. -CU = 0, (20a)
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(co- A)v + + (PU + = 0, (20b)
0. 1 1X OX

The general solution for v is

v = Asinkx+ Bcoskx-0 - f(z')sinklx- z- 'dx', (21a)
0 "•

where (x) = PU + qu2 (21b)

Here, recalling that 0 < A << 1 , the resonant wavenumber k = (A - c )0 and we

note that we must now assume that 0 < c < A. If c > A then there are no tail
0 0oscillations. To determine the constants A , B we impose a symmetry condition on v,

and then find that, as I xj -o

v bIsin(k1 xl - 6) , (22a)
1 0 o

where b cosb = L = - f ' f(x)coskxdx (22b)
10

Next, with v determined we can similarly solve (20a) for u , and find that, as
1 1

[I "l -,

(A -a
l -- bGo--, U - - c-) sin(k 1xi - b) .

(23)

Note that the tail oscillations again form a 1-parameter family with the phase b being
the free parameter, and the amplitude b then given by (22b). But in contrast to the
results of §3 the amplitude of the tail oscillations is now 0(A) when /3 is finite, and
hence only algebraically small.

It is interesting now to consider the iimit f- 0 in (22b); that is, we put 3 =
and let f -4 0 . The solitary wave core (20) then agrees with (9a, b) as expected.
However,

L =- l.k2(q-6p) + 4/5q)}fsech2/ixcoskxodx, (24a)

0 -r-k2

and so L,. -- -(q--6p)exp(- rk0/2 7) . (24b)

Although, on combining (24b) with (22a, b), we see that the tail oscillations are now
exponentially small as ( -4 0 , and the form of the expressions (22a) and (23) agree with
(18), the constant L does not in general agree with K. The reason is that in the limit
c -4 0 all terms in the solitary wave core expansion (u, vs) are needed to calculate the
tail oscillation amplitude, and a technique such as the Borel---summation method
described in §3 is needed.
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A numerical study of the three-dimensional
internal waves excited in the flow of a stratified

fluid

by Hideshi Hanazaki
National Institute for Environmental Studies,

Tsukuba, Ibaraki 305, Japan

Abstract
Three-dimensional flow of a linearly stratified Boussinesq fluid is studied numer-

ically. The flow is assumed to be confined in a rectangular channel. Near resonance
of the first vertical internal wave mode, it was found that the reflection of the
internal wave at the side wall is 'abnormal' in the sense that reflection angle is
larger than the incident angle and a third wave perpendicular to the side wall is
generated. The waves become straight crested(two-dimensional) as this third wave
becomes longer. The whole mechanism is similar to the 'Mach reflection' observed
in the general stratified fluid in which the usual soitary waves are generated. In the
case of the linearly stratified Boussinesq fluid, the abnormal reflection occurs even
though the wave has a sinusoidal profile and not a sech profile. This suggests that
the abnormal reflections similar to the Mach reflection always occur when the wave
amplitude is large enough, Irrespective of the wave profile.

1 Introduction

It has been known by laboratory experiments that the three-dimensional upstream
waves generated by an obstacle on a shallow water becomes two-dimensional with their
crests perpendicular to the side wall of the channel. As an explanation for this phe-
nomenon, 'Mach reflection' (Miles, 1977a,b) has been proposed (Ertekin, 1984; Pedersen,
1988). Similar two-dimensionalization occurs in the internal waves generated in the sub-
critical flow of a linearly stratified Boussinesq fluid (Hanazaki, 1989).

However, close examinations of those phenomena have not been done experimentally
or numerically. In a recent paper Hanazaki (1994) showed that the upstream-advancing
internal waves generated by an obstacle in a two-layer fluid becomes straight-crested
because of the Mach reflection. In that case, the upstream wave-profile is similar to the
sech solitary wave even when the flow is subcritical and the theory by Miles (1977a,b)
is qualitatively applicable irrespective of the flow is near resonance or subcritical. On the
contrary, internal waves excited in the subcritical flow of a linearly stratified Boussinesq
fluid have sinusoidal profiles and it was thought that the two-dimensionalization is the
result of the diffference in the propagation speed of the lateral modes.

The remaining problem is to see what occurs in the near-resonant flow of a linearly
stratified Boussinesq fluid. where the linear theory(dispersion relation) can not be applied.



For the same size of the obstacle, waves of larger amplitude are excited in this system,
compared to those in the two-layer fluid. In a two-dimensional flow, similar difference
exists and the nonlinearity of the wave is described only by the 'strongly' nonlinear equa-
tion (Grimshaw & Yi, 1991). We will see that the Mach reflection and the subsequent
two-dimensionalization of the wave occur in this large-amnlitude wave system.

2 Results

We have solved the Navier-Stokes equation with the Reynolds number 1000 based on
the topography height. The linearly stratified Boussinesq fluid flows through a rectangular
channel whose dimension is 80D x 40D x D(x x y x z). The number of grid points used
for the finite-difference computation is 400 x 80 x 100(x x y x z). A circular topography
is located on the bottom of the channel at (x, y, z) = (0, 0, 0). It has a horizontal scale
of radius 5D and has a height of 0.1D. In this study, Froude number F is defined by
F = U/C1 =- rU/ND, where C1 is the phase (=group) velocity of the linear long wave
of the first vertical mode (n = 1). (In the field of the linearly stratified Boussinesq fluid,
inverse EFroude number defined by K = ND/rU is often used.) In this study the Froude
number is varied between 0.9 and 1.4 (from slightly subcritical to supercritical).

In Figure 1, we show the time development of the amnplitude[Al(X, Y, T)] of the first
vertical internal wave mode when F = 0.95. Here, A1 was calculated from the velocity in
the x-direction assuming that the physical quantities such as the velocities axc the sum of
the contribution from the each vertical internal wave mode. Initially, at Ut/D = 40, the
waves are curved backward. As time proceeds, the waves (especially the foremost waves)
becomes gradually straight crested.

To see this mechanism more clearly, the corresponding contour is shown in Figure 2.
At Ut/D = 40, the far-most end of the wave does not reach the side wall of the channel
and the waves are strongly curved backwards. At Ut/D = 80, the far-most end of the
wave reaches the side wall and the reflection begins there. We note here that the reflection
angle is larger than the incident angle. We also note that the amplitude of the reflected
wave is smaller than the incident wave. As time proceeds(Ut/.L = 120,160,200) there
appears a third wave perpendicular to the side wall, whose length becomes monotonically
larger with time. This makes the foremost wave straighLb-crested or 'two-dimensional.' As
the third wave propagates upstream, the incident angle becomes smaller, but the reflection
angle is always larger than the incident angle.

The mechanism is quite similar to the 'Mach reflection' observed in the two-layer
fluid (Hanazaki, 1994), where the waves of sech 2-profile are generated. In the present
case, a phenomenon similar to Mach reflection occurs even when the waves are sinusoidal
and the Miles' theory for the solitary waves can not be applied. This means that the
phenomenon similar to the Mach reflection occurs not only for the solitary wave of sec/ 2

profile but also for the other large-amplitude wave systems.
To see if the same phenomenon occurs for other Froude numbers, we show in Figure

3 the contour of A,(X, Y, T) at Ut/D = 200 for various Froude numbers. We see that it
occurs for all the other near-resonant Fro-ade numbers (F = 0.9, 1.0, 1.1). Reflected waves
are much weaker than the incident waves and the reflection r'ngle is always larger than
the incident angle. On the contrary, when F = 1.4(supercritical), the reflection angle
coincides with the incident angle. The amplitude of the reflected wave is large and almost



equal to the amplitude of the incident wave. These show that the reflecLion in this case
is the 'normal' reflection. We see no upstream-moving of the Mach stem in this case.

3 Conclusion

We found that the abnormal reflection similar to the Mach reflection occurs also in
the near-resonant flow of a linearly stratified Bousssinesq fluid, where only the sinusoidal
waves are generated. The abnormal reflection makes the foremost wave straight crested
or 'two-dimensional.' This suggests that the abnormal reflection occurs always when
large- amplitude waves are generated, irrespective of the wave profile. Further theoretical
cAudies might be necessary to clarify the mechanism of this phenomenon.
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At high Reynolds and Froude numbers, lee waves due to the horizontal motion of
a body in a stratified fluid are superseded by random waves generated by its wake.
The origin of these waves lies in the buoyant collapse of the large-scale coherent
structures of the wake, and can be modelled as a source moving at the velocity of
the body and of strength oscillating at the frequency of vortex shedding. In the
present paper two parallel studies of the associated wave fielt are described. The
first of these is theoretical and considers localized and extended models of the source,
while the second is experimental and involves a vertically oscillating and horizontally
translating sphere. Oscillation frequencies both smaller and larger than the Brunt-
Vaisi.il frequency are considered, and reasonably good agreement between theory
and experiment is obtained concerning, e.g., the shape of the surfaces of constant
phase, the streamwise evolution of the wavelength, and the domain of existence
of the waves. Calculations are then presented for a realistic turbulent wake, and
comparison with availablk experimental results is performed.

1. Introduction

A body moving horizontally in a stratified fluid generates several systems of internal waves,
each of which is associated with a distinct perturbation of the basic stratification. In this

respect, the important parameters are the Froude number &r = U/Na, which represents
the ratio of inertial forces to buoyancy forces, and the Reynolds number .Rc = Ul/l',
which represents the ratio of inertial forces to viscous forces, with U the velocity of the

body, a its transverse radius, I its axial length, N the Brunt-V&is.l-i frequency and V the

kinematic viscosity. In particular, experiments over the past twenty years (Lin & Pao

1979; Gilreath & Brandt 1985; Hopfinger et al. 1991; Bunneton et al. 1993; Lin et al.
1993) have shows; that, at sufficiently high F2 and Re, lee waves generated by the motion

of the body are superseded by random waves generated by its wake, and have traced back

the origin of these waves to the large-scale cvherent structures of the wake.
The modelling of this phenomenon was discussed by Voisin (1994b). In the Reynolds

and. Froude numbers range involved, the wake iv turbulent and develop. initially as in a
homogeneous fluid. Coherent structures, in the form of vortex loops or turbulent bursts,

a&e released periodically behind the body al, the frequency Wo of Whe near wake spiral

instability; ?Ater a dimesionless time NM J 3 they collapse impulsively under the in-
fluence of buoyancy, generating internal waves. As fix as these waves are concerned, a

"also at SPEA/GMEI/CNRM, M&t6o-france, 42 avenue Coriolis. 31057 Toulouse Cedex, France
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turbulent wake is thus amenable to a series of impulses, of alternating signs so as to take
into account its geometry, periodically spaced in both space and time, and separated from
one another by a distance r7U/wo and tilme r/w0. Two equivalent views of this series arise
naturally: a source moving at velocity U and emitting impulses at time intervals F/Wo;
a source moving at velocity U and of strength oscillating at the frequency Wo and at all
its odd harmonics. The first view is appropriate at small axial distances from the body,
when the waves generated by each collapse have not yet had time to interfere; then each
impulse can be considered individually. Conversely, the second view is appropriate at
large axial distances, when interference has taken place; then the collective effect of all
the impulses is observed, resulting in a predominance of the fundamental frequency w0 .

A first step towards assessment of this interpretation was carried out by Bonneton et al.
(1993), who studied each coherent structure individually. The present paper investigates
the second, collective, aspect. Specifically, § 2 describes a theoretical approach of internal
waves geanerated by the simplest practical realisation of a horizontally translating source of
oscillatory stiength, i.e., a sphere both translating horizontally and oscillating vertically.
Then § 3 compares the results of this theory with experiments, and § 4 applies them to a
realistic turbulent wake.

2. Theoretical background

2.1. Source model

In a homogeneous fluid, a sphere of radius a moving at velocity uo(t) along a path x0(t),
with uo(t) = dro/dt, can be modelled either approximately, for R >> a, as the dipole

md(x,t) = -21ra 3u0 • . Vb(X), (1)

or exactly, for all f./a, as the surface distribution of sources

3 X
(n.(x, t) = XuO ( -6(R - a), (2)

2 a

where x =- jx, , z] denotes position, with r = lxi, t denotes time, X = x-xo is the position
relative to the centre of the sphere, u = [u, v, w] the fluid velocity and m = V u the source
strength (rate of volume outflow from the source). Use of these models in a stratified fluid
was introduced by Miles (1971) and Gorodtsov & Teodorovich (1982), respect-vely, or, the
assumption that the Froude number be laxge, so that the flow around the sphere is locally
unaffected by gravity. Experiments suggest, however, that these models remain valid
even for moderate values of Fr, the only difference being the replacement of the far-field
condition R >> a by the compactness condition a < A, with A the wavelength of the
waves (see, e.g., Voisin 1994a). Another approximation implicit in (1) and (2) is that the
teynnuids number Re be moderate, so that no wake is formed.

In the system of coordinates shown in figure la, of origin O1 equal to the mean position
of the centre of the sphere, xl-axis horizontal and directed opposite to the mean motion,
and vertical z-axis, a motion composed of horizontal translation at velocity U and vertical
oscillation of frequency wo and amplitude h corresponds to the path xo(t) = -Ute, -

2
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(a) (6)
Fiouas 1. Determination of tihe wave field of a horizontally translating source of oscillatorystrength; (a) system of coordinates and (b) graphical solution of equation (8) for the parameter
4* = /I sin •1  , for (- -) T/[ sin •'l = 0.5 and (---) T/I sin •jj = 1.2.

h sin(wot)e,, where e: and e• are unit vectors along the arl and z-*axes, respectively. Small
oscillations hi < a can be neglected in the position of the source but not in its velocity,
so that (1) and (2) become

md(x, t) = 2zra5 [up -+hWo cos(wo~~o.. S(xi)3(y>5S(z), (3)

-U hwocos(wo-)-] 6 (r- -- a). (
This approximation is straightforward for the surface source; for the dipole it follows fromremarking that s m(x, t) is asymptotic to md(x, t) in the limit of large o (avelengths A > ai,
asccan be seen by comparing their spectra

d(k, t) = -2=ra 3[Uk +- hwocos(wot)mIn, 
(5)

mn(k,t) -6iia [Uk + hwo cos(Woot)rn]- , (6)

2 a
defined by

(2w•) 3where k = [k,l,m] is the wavenumber vector., with s u Ie 2/A, and t
1 (z) =(sin z)/zt2 

- (cos z)/z is the spherical Bessel function of order 1.The sphere can thus be modelled a the linear supraposition of two sourcc, both in
uniform horizontal motion, and whose strengths are constant and oscillatory, respectively.
For oscillation velocities hwo large compared with the translation velocity U the second
component, becomes large compared with the first component (i.e., lee waves); in whatfollows this is only the situation• that we shall ,consider and lee waves will accordingly beomitted. In terms of the dimensionless parameters introduced. e.g.. 'iy Davies et aii. (1994),
we have: moderate Reynolds number ve = ta/u, large Froude nunaber F" = U/Na,small Keulegan-Garpenter lumber mon ad/a tand large velocity ratio hiwo/U.
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2.2. Wave field

internal waves generated by the uniform horizontal motion of a source of oscillatory
strength have been studied both theoretically (Stevenson & Thomas 1969; Redekopp 1975;
Rehmn & Radt 1975; Peat & Stevenson 1975) and experimentally (Stevenson & Thomas
1969; Peat & Stevenson 1975; Davies et al. 1994). Emphasis was on the determination of
the surfaces of constant phase. Here we adopt the approach exposed in Voisin (1994a),
in which the amplitude and the phase are obtained jointly.

Waves are ruled by the frequency ratio T = wo/N, and are exprcssed in terms of the
auxiliary variable ý, which in spherical coordinates (rl, 01, ,A) (see figure 1 a) satisfies the
equation ý (sin' vi

tan01= Tsin2' 42 n - -' (8)

subject to the condition 4!1 < I sin aI1. The solution of this equation defines two systems
of waves, suni waves with positive ý and difference waves with negative 4, each of which
system is itself separated into transverse and divergent components. Both systems are
contained within wavefronts, parts of which art caustics, and which correspond to the
maxima or jumps (=-±, 01) observed in figure lb. The analytical expression of Z± and
0± was given in Voisin (1994a) and will not be repeated here. For each wave system
the divergent and transverse components merge on the caustic; associated ranges of 4 are
-i sin •cp< < < =-- for divergent difference waves, E_- < c < 0 for transverse difference
waves, 0 < • < B-+ for transverse sum waves and :+ < 4 < Isin Vi I for divergent sum
waves.

The name of those components refers to the shape of their horizontal curves of constant
phase, shown in figure 2a. For T > 1 difference waves are upstream facing and sum
wa~ves downstream facing; both of them have cusps on the caustic where divergent and
transverse waves meet, and extend only dowastreama. For 7 < 1 difference waves and
transverse sum waves remain essentially unchanged, while divergent sum waves, starting
up from the caustic, tend towards infinity downstream as [Yi IZI[(1 - T1)2/T, come
then back towards regions of smaller x, and finally extend ups3treamn.

The derivation of the characteristics of the waves is straightforward and yields, for the
frequency and wavenuruber vector,

=N[_ IT -- cosx 1-- L T-4I sini_1
T= UL (sin' ýp -24 . (sin'.y).1 -. 2. . (9)

The vertical displacement C, related to the vertical velocity w by w = OCI/Ot, follows
similarly from replacing in Voisin (1994a) the monopolar moment m 0 of the source by the
spectrum mr(k, t). The resulting expressions, combining (5), (6) and (9), fail to describe
the vicinity of the caustics, where they diverge; a more elaborate description of this

vicinity, involving Airy functions (Lighthill 1978, § 4.11), was not attempted.

3. Sphere experiments

Experiments were conducted in a transparent tank 50 cm wide, 50 cm deep and 400cm

long. A heavy sphere of radius 1.12 cm was towed horizontally through a linearly strati-
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T 0.4 T= 0.S T 1.2

PioU RE 2. Vertical displacement field generated by horizontal translation of a vertically os-
cilating sphere, for T = 0.4, 0.8 and 1.2. with Fr = 0.25 and Ke = 0.6. Dimensionless
coordinates x, = Nx/IU are used, with z, = 24 (except for T = 0.4, in which case z, 4= 17). (a)
shows (-) the first few Bines of constant phase of each wave system and (---) the associated
wave6l-onts; for T < 1 these fronts comprise a circle, whose upstream and downstream halves
correspond to divergent and transverse sum waves, respectively. The theoretical displacement
field is shown in (b) for the dipole and in (c) for the surface source, while (d) is the experimental
visualization; gray scale units are arbitrary.
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fled fluid, a vertical sinusoidal oscillation being superimposed on the uniform horizontal
translation of the support of the sphere. The towing and visualization techniques were
identical to those used by Bonneton et a!. (1993). Five frequency ratios T = 0.4, 0.6, 0.8,
1.01 and 1.2, both smaller and larger than 1, were selected. Other parameters were chosen
so that three of the four conditions mentioned in § 2.1 be satisfied: moderate Reynolds
number, small Keulegan-Carpenter number, large velocity ratio. The Froude number was
then fixed by experimental requirements.

Experimental results are summarized in figure 2. Two factors appear to distort them
significantly: the presence of lee waves, easily recognized by their hyperbolic curves of
constant phase, and the reflection of the waves on the walls of the tank. Lee waves are all
the more pronounced as T is small, since the velocity ratio hwo/U = TKe/Fr is, for given
Fr and Ke, proportional to T. For a discussion of the effects and occurrence of tank wall
reflections the reader is referred to Graham & Graham (1980).

The first conclusion to be drawn from figure 2 is the inadequacy of the dipolar repre-
sentation (3) of the sphere, since the displacement field bhown in figure 2b is dominated
by high-amplitude difference waves which are absent from experiments. The reason for
this lies in the compactness condition a < A, which is not satisfied by the short difference
waves. Alternatively, this can be explained by remarking that the dipolar spectrum (5)
varies as na, overemphasizing the contribution of large wavenumbers, while the surface
source spectrum (6) varies as j1 (Ka) and is thus a maximum at Ka ýs 2 (Abramowitz
&Stegun 1972, ch. 10). Only the surface source model can thus be expected to yield
satisfactory agreement with experiments.

This agreement is first qualitative, and concerns the structure of the wave field. As
shown in figure 2d, divergent sum waves are dominant for T = 0.4; as T increases and
reaches 0.8 transverse sum waves appear at some distance downstream, and finally for
T = 1.2 they supersede divergent waves in the vicinity of the sphere. This results from
the combination of several factors: position of the wavefronts 01 = 0 within which each
wave system is found; amplitude associated with these systems in the spectrum rm(k, t) of
the source; restrictions imposed on the domain of observation of the waves by the presence
of lee waves and by tank wall reflections. These arguments can be made quantitative,
e.g., by plotting the function ji(Ka) as a function of zx for y = 0 (not shown here). As
V increases from 0.4 to 1.2, zones of rapid phase variations (nay inversions) appear near
the caustics. This is attributable to an interference between transverse and divergent sum
waves, of similar wavelengths in that zone.

The evolution of the wavefronts with T, i.e., their narrowing as T increases, is con-
firmed by experiment. Their position is difficult to determine because of the perturbation
of the wave field by the lee waves and by the wall reflections. For relatively small x1 ,
however, this perturbation is negligible, and the theoretical and experimental wavefronts
differ by a lateral distance of the same order as the diameter of the sphere. A possible
explanation for this is the diffraction of the wav s outside the caustics, a phenomenon not
taken into account in the formulae used to compute the theoretical wave field.

More quantitatively, figure 3a compares, for T = 0.6, the theoretical and experimental
values of the axial wavelength A. = 2r/IkI in the plane y = 0, measured from several
images similar to figure 2d. The number of experimental runs compensates for the rela-
tively poor precision of the method. Good agreement is obtained with the interpretation

6
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FIGUitE 3. Dimensionless axial wavelength A, = (N)x)/(27rU) versus dimensionless downstream
distance x, in the plane y = 0, for (a) T = 0.6 and z,, = 24 and (b) T rt and z, = 0.6;
(-) theoretical curves, (.) experimental points, (---) lee wave length, (--) spatial period of
the source path.

of the wave field in terms of mainly divergent sum waves. As Nlx/ U - c we have for
divergent difference waves, transverse waves and divergent sum waves, respectively,

A), - 27rU ( I , 1' IT' ,) (10)

indicating that the axial wavelength of transverse waves tends towards the spatial period
27rU/wo of the path of the source. Figure 3a shows that this period is never observed in
the wave field.

4. Wake application

Application of the preceding analysis to a realistic stratified turbulent wake, created by
horizontal motion at velocity U' of a body of transverse radius a' and axial length 1',
supposes that the various parameters arising in this analysis be expressed in terms of
those associated with the wake. According to the discusion of § 1, the velocity U and
frequency wo of the source equivalent to the wake are identical to the velocity U' of the
body and to the frequency wo of the near wake spiral instability. Similarly, the radius a of
this source represents in some phenomenological way the radius of the coherent structures
before their collapse, and will be assumed to be of the same order as the radius a' of the
body. The amplitude h of the oscillations is just a device to reproduce Y.perime~ltally a
source of oscillatory strength and, as this strength, depends on the precise dynamics of
the collapse. Hereafter these approximations will be used and primes will be omitted.

The main conclusion of §§ 2 and 3 was the strong dependence of the wave field on
the frequency ratio T = wo/N, which can be expressed in terms of the Strouhal number
St = awo/irU as T = ?rStFr. In the Reynolds and Froude numbers range considered
in the literature, the Strouhal number is 0.2 for towed bodies and 1.0 for self-propelled
bodies (see, e.g., Voisin 1994b). A sphere towed at a Froude number Fr = 5 corresponds
thus to T = 7r, value that we adopted in figures 3b and 4 to compute the axial wavelength

7
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FIGURE 4. Vertical displacement field generated by uniform horizontal translation of a vertically
oscillating sphere, for T = r, Fr = 5 and z. = 0.6.

and vertical displacement field, respectively; these are to be compared with figures 8 and
9 of Bonneton et al. (1993).

Comparison between the theoretical and experimental wavefronts has already been
successfully performed by Gilreath & Brandt (1985) and Bonneton et al. (1993) and
will not be repeated here. As this wavefront is passed all waves are observed nearly
simultaneously, with axial wavelengths close to one another and tending rapidly towards
the asymptotic values (10), which themselves do not differ much from the spatial period
2rU/wo of the wake. Then, consistently with Hopfinger et al. (1991), Bonneton et al.

(1993) and Lin et al. (1993), a regime is reached in which the wavelength is independent
of the Froude number and identical to the mean spacing cf the coherent structures, which
in terms of the diameter 2a of the body means A1/2a St-1 z 5.

It is tempting to associate this regime with the coherent wave r6gimc reported by
Bonneton et al. (1993) and already distinguishable in the results of Hopfinger et al. (1991).
In particular, A,/2a is roughly of the same order as the wavelength of the first coherent

waves identified by Bonneton et alt (1993). However, the associated wave field, shown
in figure 4, exhibits a very complicated phase structure resulting from the interference
between the four wave systems, and differs from the more or less organized structure
observed by Hopfinger et at. (1991) and Bonneton et al. (1993). This makes the present
interpretation just tentative.

We finally point out that the analysis exposed in the present paper relies entirely on the
assumption that advection of the coherent structures before the collapse is negligible, so
that the process of emission of the waves is impulsive. There may, however, be situations
where advection is significant before the collapse. Then each structure generates not an
impulsive wave field but a lee wave field, as reported by Sysoeva & Chashechkin (1991)
for a towed sphere and by Dupont & Kadri (1994) for a bell-shaped obstacle.

The authors gratefully acknowlcdge tho advice and guidance of Prof.A. . 'Ilopfinger.
Experiments were carried out by one of the authors (P. D.) during a one-year stay within
the SPEA team of the Centre National de Recherches MWt6orologiques; thanks to all of

them for their kindness and invaluable help.
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Abstract

The dynamics of a stratified fluid is studied in the Boussinesq approximation. The

2-d case of one vertical and one horizontal dimensions is taken, being a situation en-

countered in a number of theoretical and experimental studies. The resulting dynami-

cal system describing non-linear internal gravity waves or, in other words, the internal

wave - vortex interactions has a peculiarity of having an infinity of integrals of motion

constraining the initial dynamical variables. It is shown that this is a reflection of a

deep geometric nature of the system. This latter is used 1) to climinate perturbatively

the constraints and to arrive to a set of the proper dynamical variables neccessary foc a

weak turbulence approach; 2) to formulate a variational principle aad to study a global

stability of the system.
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Introduction

Stratified fluid in the Boussinesq approximation provides a conceptually and practi-

cally important exasmple of the wave - vortex intraction. Indeed, the internal gravity

(buyoancy) waves dominate in the limit of small perturbations, while in the opposite

limit we have a system of vortices that advects density. The parameter which con-

trols dynamical behaviour of the system is the Brunt -Viisli frequency N =-9ELIE '

where po(y) is the background density stratification in the vertical direction and will

be taken to be exponential (a constant N) for simplicity. In terms of vorticity (w) and

buyoancy ( -= -g' , g - gravity acceleration ) variables the system of dynamical

equations restricted to the vertical x - y plane takes the following form:

Here J denotes the Jacobian in x, y variables, 4 is the stream-function. It easy to

see that in the case of strong stratification ( N -). cc) one can use a perturbation

theory to study rnon-linear corrections to the regime of freely propagating internal

gravity waves. Thus this system is a natural candidate for a weak-turbulence approach

[i] and indeed, certain attempts in this direction (see, for example, [21) have been

undertaken. However, the problem is that the dynamics governed by (1) possesses a

peculiar property of having an infinity of integrals of motion. Namely, there are two

infinite families of conserved quantities: any function of C - N2y integrated over the

domain of the flow is conserved itself as well as being weighted with vorticity:
1 FG = f[1-(c - N2y) + w2(C - Ney)]dxdy (2)

The physical origin of these conserved quantities is the advection of density in the

Boussinesq approximation. Prom the mathematical viewpoint they are so-called Casimirs

and reflect the fact that the original system may be treated as a generalized Euler

equation related to some infinite-dimensional Lie algebra [3] and thus preserx es all the

invariants of the corresponding symmetry group action.The presence of an infinity of

integrals means that the original dynamical variables w aid • are severely, constrained

r -, i



and in order to avoid the problem of the compatibility of these constraints with stan-

dard statistical assumptions of the weak turbulence approach it would be better to

work from the very beginning with the variables which are free of constraints. In order

to find these variables we need to understand better the above- mentioned symmetry

transformations. Their study will be the subject of the first paxt of the paper and will

allow us to find explicitely the unaconstrained variables. The analysis of this part is

essentially perturbative, i.e. local. The second part of the paper contains the global

analysis in the sense that it allows to study a behaviour of trajectories of the dynami-

cal system in terms of quasi-Lagrangian variables still provided by the aforementio-ed

geometric background.

The local description of the phase-space

Consider the following transformation of the dynamical variables:

w = J(x,w) + J(A,) -N 2 A., 6t = J(X,) - N 2 X, (3)

where X, A are some infinitesimal functional parameters. It is easy to check that these

transformations leave the Casimirs (2) invarant. Now, the presence of the Casimirs

means that the time evolution of our dynamical system (1) takes place not in the whole

space of original variables w , ý but rather on the surface of constant Casimirs embedded

into this latter. This means that the original phase-space is foliated into a fanmily of

these surfaces. The fact that the transformations (3) do not change the Casimirs means

that any such surface is a symmetric manifold. In fact, it is a so-called co-adjoint orbit

of the group of symmetry transformations given in their infinitesimal version by ($).

Any point of such a manifold may be reached by a finite group transformation from

any other point. This means that by applying all possible symmetry transformations

to some fixed initial point one obtains the whole manifold which gives a possibility to

get unconstrained dynamical variables: they axe the ce-ordinates on this symmetric

manifold - the parameters of symmetry transformations applyed to some given initial

point in the phase space w0o, ýo. Hence, what we need is an explicit form of the finite

2



transformation corresponding to (3). It has been found in [3], [8] and has the following

form:

w(x, y) = wo(X, Y) - J(A, ýo(X, Y) - N2Y), C(x,y) =o(X, Y) - N 2(Y - y). (4)

Here X, Y are related to the original coordinates by an area-preserving change of

variables J(X, Y) = 1, A(z, y) is an arbitrary function. We see that the transformation

of buyoancy variable is closely related to the fact that the combination C - N 2y - a

"total buyoancy" is being simply advected (cf. (1)) while the transformation of vorticity

is more complicated being a combination of the advection and adjustment due to

buyoancy. Thus, we are close to our goal, the last obstacle being the incompressibility

constraint J(X, Y) = 1, otherwise the (Lagrangian) variables X, Y and the additional

function A would solve the problem. Unfortunately, as it is well-known, there is no

way to get rid of the incompressibility constraint for arbitrary area-preserving ange

of variables. However this may be done perturbatively for special orbits (i.e. for special

choice of Casimirs' values). Namely, taking the orbit corresponding to Ca = 0 we reduce

(4) to

w(x,y) = wo(X,Y) .4- J(A, N 2 Y), e(x,y) = -N 2 (Y - y). (5)

Then, we note that for area-preserving changes of variables not far from identity we

may use a generating function which solves explicitely the incompressibility constraint:

X=z+Sy(x,Y) ,Y=y-S S(xY). (6)

Introducing this into (5) we get

w(x, y) = wo(x+Sy(x, Y),y-S.(x, Y))+J(A, N 2y-S.(X, Y)), 4(x,y) = N 2'S(x, Y).

(7)

In fact, the nonlinearity of this transformation has become infinitely high since instead

of Y one has to introduce y - S.(x, Y) as an argument of S everywhere in (7) in

a nested way. To cope with this non-polynomial behavior we shall make use of the

smallness of N-1 , i.e. we hereafter suppose that stratification is strong. Introducing a

scaled variable (N= NS., we can solve perturbatively the second equation - "K) and
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get

t((,y)= + . (n(+l )! - + N-2 CC + O(N 4 )" (8)

The condition ýo = 0 means that our system has no closed isolines of total buyoancy

and the perturbative use of generating function supposes that there are only small

deviations from this regime. We may further simplify our system by fixing O- = 0. This

means (still assuming the validity of generating function description) that only small

fluctuations around the vortexless state are possible during the dynamical evolution.

This regime is fully compatible with the picture of weakly non- linear buyoancy waves.

Thus, rescaling the variable N2 A = a we have:

w = a + N-2 J(a, () + O(N 4 ) (9)

Hence, we have got explicit expressions for old variables in terms of new unconstrained

ones ( and a. By introducing them into original system (1) we get a system of

dynamical equations in terms of these variables and may therefore apply a standard

philosophy of weak turbulence without worrying about compatibility with constraints.

Note that although we can always come back to original dynamical variables and

original equations (1) the fact that the new variables and the old ones are related

non-liearly means that applying Gaussian statistics to the new variables results in a

non-Gaussian one for the original variables.

The global picture of the phase-space

Let us consider in more detail the origin of the Casimir invariants. To do this we need

to remind some facts related to the abstract Euler equation. Given an arbitrary Lie

algebra g (which may be thought of as, for example, some matrix algebra in the finite-

dimensional case or an algebra of differential operators in the infinite-dimensional case)

wi' '.ructure relations

[CFA, eB] = C , eAE E 9, A=1,2,..., (10)

4
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where the vectors eA form a basis in g, CCB are structure constants and summation

over repeated indices is assumed hereafter, we may define a (non-degenerate) metric

< CA,eB > =9AB (11)

i.e. a mapping from the vector space g to its dual g*. Therefore for any element w E 9*

given by its coordinates wA, A = 1, 2, ... we may construct the following equation which

is called an abstract Euler equation:

WA + 9"CABWDWC = 0, (12)

here gBC is the inverse of g9o. Eq. (12) is an equation for a variable that belongs to the

linear space 9" . The (infinitesimal) action of the Lie group related to (10) is defined
in 9*:

,WA = CABWDXB (13)

where X- is a set of parameters. This action is called a co-adjoint action and a manifold

obtained by applying (exponentials of) all possible transformations (13) is a co-adjoint

orbit. As it is easily seen, a dynamical evolution (12) is, in fact, a co-adjoint action

of the group and, hence, preserves any invariant of this action (a Casimir invariant)
C(W):

aCA D -0 (14)

The crucial fact ir that the abstract Euler equation (12) is equivalent [4] to the geodesic

equation on the Lie group (if it exists) corresponding to the Lie algebra g. The latter

is a tangent space to this group at the vicinity of the identity element and a metric

defined on g may be transported to any point of the group manifold by the (right)

group action. in this way the group as a whole acquires a Riemannian structure,

eq. (12) being a geodesic equation written at the vicinity of unity. Let us remind the

corresponding formulas for the covariant derivative [4]:

VCAeB VAeS = PCBec;

5
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here r•A are the coefficients of a symmetric connection compatible with the metric.

The components of the curvature tensor are:

RKLMN = - < VKVLeM - VLVKCM - V[eK,eL]eM, eN > (16)

while the sectional curvature which enters the Jacobi equation for geodesic varia-

tion and whose sign is responsible for the separation or convergence of neighbouring

geodesics is given by

K( R, q) = RKLMNýKLCMVN, (17)

where ý and 17 are the tangent vector to the geodesic and a vector of geodesic deviation,

respectively.

The basic infinite-dimensional example of this construction which was first treated

in [41 is the Lie algebra (and the Lie group, respectively) of area-preserving diffeo-

morphisms. For periodic boundary conditions the elements e, may be realized as the

differential operators

en inz tie, = e;", nX 8 , (18)

where n and x axe 2-d vectors, n denoting Fourier-indices: n = (n1 ,n 2 ), x (zl,z 2 )

and x denotes the skew product: n x m ý nIm 2 - n2mi. This gives

[eI em•] = n X m en+m, (19)

Taking the inverse Laplacian in Fourier-space as a metric

g.. = n-2 ,(n + m) (20)

and structure constants following from (19) one reproduces the equation of vorticity

advection in 2-d ideal hydrodynamics [5].

In order to relate this construction to the stratified fluid equations (1) we have to

make some extension of the original algebra (19) which is called a semi- direct product

of symplectic diffeomorphisms and functions, a construction which has been repeatedly

discussed in the literature [6], [7], [8]. It consists in adding to the c, from (19) their

commuting counterparts e.,:

, em,] = 0 (21)
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such that
[uc, th,] l nm × m e(,+,m)'. 

(22)

With en realized by (18), the e,, may be taken as the elements of a Fourier-basis for

functions, e, -- e=6""' in order to reproduce (21), (22). While the variables w, related

to en correspond as before to vorticity, the new variables, say in,, related to e., appear.

If the old metric, i.e. the inverse Laplacian, is preserved for the es-sector, and there

are no mixed components: g,, 0 = 0, the immediate consequence of (21), (22) is the

advection of the variable 4(x):

ý + J(CV¢) = 0 (23)

while a term bilinear in ý appears in the vorticity equation

ý + J(w, V') - J(c, .k) = 0 (24)

where we have introduced an operator M which is determined by the components g,,,'

of the metric. There is a number of physically relevant equations resulting, with a

proper choice of k, from (23), (24) - e.g. 2-d MHD equations or equations for the

axi-symmetric flows with swirl [9]. For our purposes it is sufficient to take k = 1, in

which case the additional term in the vorticity equation vanishes ideatically. There are

no linear terms appearing in (1) in thus obtained equations so the next step is to further

generalize the algebra (19), (21), (22) by means of a so called central extension. Indeed,

one may add a term in 16(n + m') to the r.h.s. of (22) and have no contradiction with

the Jacobi identity. This means that a new (unity) generator e0 trivially commuting

with all other ones may be added to g without destroying the Lie-algebraic structure.

This means, in turn, that a new coordinate wo should be added to g*. It is easy to see

that it is trivially conserved and may be identified, after a proper resc.an.,.. wi N-

in the resulting Euler equations (1).

Thus, we have shown that our basic dynamical equations indeed have a deep geo-

metric nature and may be treated as geodesic equations on some infinite dimensional

manifold. Note that in comparison with a geodesic interpretation of the pure hydrody-

namics which is essentially the Lagrangian picture, here we have additional coordinates

related to buyoancy (one may think about this latter as of the velocity component in

7
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the third, auxiliary, direction) and to the new co-ordinate Wo. The set of these co-

ordinates gives a global picture of the phase-space and one may address the problem

of global stability by estimating the divergence of the nearby trajectories (geodesics)

in this global phase-space with the help of the Jacoby equation, i.e. by calculating

sectional curvatures. Due to the presence of the symmetry group it is sufficient to cal-

culate these latter in the vicinity of unity, i.e. according to (16). Knowing the structure

constants and the metric we have all neccessary tools to do this. The detailed curva-

ture calculation will be presented elsewhere, but we can expect that strong enough

stratification will suppress the divergence of the neighbouring trajectories, playing the

same stabilizing role as strong # in the case of non-linear Rossby waves dynamics [9].

Conclusions

We have shown that a stratified 2-dimensional fluid in the Boussinesq approximation

has a geometric nature which manifests itself on the dynamical level by the presence

of an infinity of the integrals of motion. The proper use of this geometric background

allows one to find the proper unconstrained dynamical variables in the limit of strong

stratification. From the other hand a global behaviour of the dynamical trajectories of

the systems may be analyzed starting from the variational principle based on the same

geodesic interpretation of the system.
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Abstract

We present experimental results on the structure of the turbulent wake of a sphere

and on the frequencies associated with the vortex shedding in a stratified fluid. The

strong correlation between the random internal wvle field emitted by the wake and the

coherent structures of the turbulent wake is demonstrated.

1. Introduction

In this paper probe measurements are presented which give novel information about

the internal wave field and the turbulent wake generated by a moving sphere in a

stratified fluid. It completes previous work, which dealt with the structure of the near

wake (Chomaz et al. (1993)a, hereinafter referred to as CBH), the far wake (Chomaz

et al. (1993)b) and the internal wave field (Bonneton et al. (1993), hereinafter

referred to as BCH). In this paper we focus on the temporal evolution of the turbulent

wake structure and its interactions with the random internal wave field.

Experiments were conducted in two different water towing tanks of respective sizes

0.5x0.5x4 m3 and 1x3x20 M3 . These tanks were filled with a linear salt

stratification Ne [0.67,2.02 rad/s], N=(-g/p dp/dt)"12 . Four spheres of radii

R={1,12, 2.5, 3.6, 5.0 cm) were used in the experiments, and their velocities U

ranged from 1 to 50 cm/s. The Froude number (F=U/NR) was varied between 0.8 and

12.7, and the Reynolds number (Re=U(2R)/v), between 380 and 30000. When, for a

given stratification and a given sphere, the velocity is varied, the two dimensionless

numbers F and Re vary together ; the linear relation is Re(F)-Re(1)F, where

Re(1)=2R 2N/v is the Reynolds number for F-i. In this paper, a set of experiments is

characterized by its Re(l) value. The experimental methods have been presented in

detail in CBH and BCH.



Figure 1. Fluorescent dye visualizations in (a) the vertical central plane, and (b) the

horizontal central plane, for F=2.0 and Re(1)=329 (R=1.12 cm).

2. Wake Instability

CBH showed that for F >4.5 (3D regime) the stratification has no effect on the close

wake (Nt<3). Like in a homogeneous fluid a regular spiral instability occurs with a

fixed Strouhal number of 0.17. On the opposite, for F<1.5 (SLW regime), thI wake is

dominated by a very sirong lee wave of maximum amplitude R/2, which suppresses the

wake instability. Between these two regimes, a more complex regime (T regime)

exists, where the wake recovers progressively its behaviour in homogeneous fluid as F

increases. Figure 1 shows that this instability does not correspond to a spirat

instability but to a vertical oscillation. Un et al. (1993) observe a symmetric vortex

shedding because they used a shadowgraph technique which is not suited to analyse

precisely the structure of three dimensional wakes. The shadowgraph picture

integrates the information along each ray and the global symmetry of the picture they

obtained does not imply that the wake is locally symmetric with respect to the median

horizontal plane.

AAA Re(1)=2614. (R=3.6cm)

00000 Re(1)=2641 (R=3.6cm
Z00000 Re(1)-1875 (R-2.5cm

1M" Re 1 -3888 (R-3.6cm"*r*Re( 1 )-1767 (R.2.5cm)

0.1

1 10
F

Figure 2. Strouhal number of low-frequency instabilities of the wake as a function of
the Froude number, determined from spectral analysis of probe signals. The probe is
located at z=O and x=3R.
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Figure 3. Instability amplitude A, normalised by R, as a function of F, measured with a
conductivity probe at the location z=0 and x-3R.

New conductivity probe measurements have been carried out to complete the CBH's

analysis of this regime. The Strouhal number (S=2fR/U) of the wake instabilities is

plotted on figure 2 as a function of F. The oscillatory instability occurs for F-0.9

(SLW regime), but as indicated on figure 3, its amplitude is very small until F=1.2.

Moreover, for Fe [0.9,1.2], the instability is intermittent and very sensitive to

perturbation, such as oscillations of the sphere at the start up. The oscillatory

instability is strongly established for F>1.2 and its Strouhal number decreases like

1/F3/2 until F.-3. The data dispersion for Fe [3,4.5] is probably related to the

transition between the oscillatory instability and the spiral instability. These

instabilities do not depend on the Reynolds number, excepted for the critical Froude

number Fc, at which the instability starts (see table 1), and contrary to Lin et al. 's

(1992) analysis, can not be associated with Kelvin-Helmholtz instability.

Re(l) 3888 1875 j 3291
Fc 0.8 0.9 1 1.4

Table 1. Critical Froude number for onset of oscillatory instability as a function of
Re(l).

3. Turbulent wake structure

In this chapter we present results concerning the temporal evolution of turbulent

wakes for T and 3D regimes. A single-electrode conductivity probe was pulled behind
I



the sphere at several locations behind the sphere. We made also some measurements of

the vertical velocity w and the density p at the same location inside and outside the

wake. Some results are reproduced from work by Thual et al. (1987).
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Figure 4. Overturning length scale normalised by R, as a function of Nt.

The overturning length scales Lt- -2<p'2>112/(dp/dz), where p' is the density

fluctuation, are plotted versus Nt in figure 4. Similar to what is observed in

homogeneous turbulence, Lt increases first with time, until Nik-2.5 and then starts to

decrease. This transition corresponds to the maximum of the vertical wake thickness

determined by Un et al. (1992). For Nt>Ntc, the wake feels the stratification effects

and loses its axisymmetry. The decrease of U with time is indicative of the decrease of

the amplitude of vertical motions which are progressively suppressed by

stratification.

o *

-. I$

.2 . 4 . .7,. 3 1I4 a O1D9
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Figure 6. w' and p' correlation, as a function of Nt ; 0, F=1OI/ ; x, F=40/7r
Re(1)=1218, R=2.5 cm and N=1.13 rad/s.

Figure 5 shows the temporal evolution of the co-spectrum and quad-spectrum of w'

(the vertical velocity fluctuation) and p' , inside the wake (a,b,c,d,e,f,g) and outside
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Figure 5. Co-spectrum (solid line) and quadrature-spectrum (dashed line) of w' and
p', for F1710irh (Re(l)=1218, R=2.5 cm and N=11.13 radis), inside the wake at the
location z=O :(a) Nt=1 .2 ;(b) Nt-=2.2 ;(c) Mt=4 ;(d) Nt=5 ;(e) NI=6 ;(f) Nt=7
(g) Nt=8 ;and outside the wake at the location z=21R :(h) Nt=7.



the wake (h). In figure 5 (a) the quadrature-spectrum is close to zero and the co-

spectrum exhibits a significant peak which corresponds to the wake instability with a

dimensionless frequency of 0.2. This implies that w' and p' are correlated inside the

turbulent region. For Nt2.Ntc (figures 5b,c and d), we note that the spectrum is not

dominated by the wake instability. Figure 6 shows that w' and p' are correlated for
Nt<Ntc and decorrelated for Nt>Ntc. For Nt>Ntw,6 (figures 5 e, f and g), we observe

that the quad-spectrum is large compared to the co-spectrum. This indicates that w'

and p' oscillate in phase quadrature as required for internal waves. Thus for Nt.Ntw,

the wake is dominated by internal wave motions. The quadrature-spectrum shows a

peak which corresponds to the wake instability frequency. This confirms the fact

previously described in BCH, that the random internal wave field is generated by the

collapse of the coherent structure periodically emitted by the turbulent wake. The
dimensionless time Ntw corresponds also to the time of the appearance of internal wave

outside the turbulent wake (see BCH).

1120.00)

1110.00

1100.00 I

"0)1060.00
"*0

1070.00

1060.00

a b c
0.00D . 2 0.20 0.40 0.50 0.50 1.OC 0.00 0.-20 0.40 0.60 0.60 .000.00 0.20 0.40 0.60 Q.60 1.00

t (secondes) t (secondes) t (secondes)

Figure 7. Vertical density profile for F=6 (Re(1)=31552, R=5cm, N=1.22 rad/s);
(a) Nt=2 ; (b) Nt=6.5 ; (c) Nt=12.

To improve our understanding of the collapse phenomenon we measured the vertical

density profile of the wake at different locations (figure7). A conductivity probe was

pulled behind the sphere and was driven down across the wake with a constant velocity:

43.7 cm/s. In figure 7a, for Nt close to Ntc, we observe that the wake has been

entirely mixed by the turbulent motions. Figure 7b, obtained at Nt>Ntc, shows that the

density profile Is close to the initial linear stratification, and that density

perturbations are located In a narrow layer which corresponds to a collapsed wake. For

Nt>Ntw (figure 7c) we observe density perturbations outside the wake, which are

associated to the random internal wave propagation.
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Figure 8. Random internal wave for F=20/h and Nt=,11. (a) shadowgraph side view,
Re-12624 (R=2.Scm); (b) laser-induced-fluorescence visualization in a horizontal
plane at z=3R below the centre of the sphere, Re=1611 (R=1.12cm).

4. Random wave field

We have shown in the previous chapter that internal waves are predominant inside the

wake for Nb>Nt•. BCH showed that these waves are also emitted outside the wake at the

same time and demonstrated that these random waves behave like transient internal

waves emitted by bodies started Impulsively. The phase structure typical of impulsive

waves is illustrated in figure 8. The shadowgraph side view (figure 8a) shows, outside

the wake, black and white fringes which characterize the random wave isophases.

Figure 8b presents a horizontal visualization of these waves which appear as

semicircular concentric phase line patterns.
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Figure 9. Co-spectrum (solid line) and quadrature-spectrum (dashed line) between p'
measured at z=2R and z=5R. x=50R, F=6 (Re(l)=5474, R=5cm).



To improve our knowledge concerning the vertical structure of these waves, we have

pulled behind the sphere at x-50R (Nt=8.3), a set of four conductivity probes located

at z=2R,3R,4R and 5R. Spectral analysis of probe signals indicates that whichever z,

wave spectra are dominated by the frequency which corresponds to the frequency of the

wake instability. There is no frequency gap, but a phase gap between the signals. This

is due to the slope of the isophases (see figure 8a). In particular, as shown in figure 9,

internal waves at z-2R and SR oscillate in phase quadrature. This corresponds to an

angle between the vertical and the isophase of 430 which is in agreement with

shadowgraph visualizations (figure 8a).
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ABSTRACT
Results of experimental study of the tkermocline stratification infuence on dra parazmete of
horizontally mad uniformly driven sphere are •epreated. The t-here with a diameter of about
thermocine thidckess was towed at a depth of the thermocline center. The Reynolds and the
Poude number ranges were respectively 1.6 * 103 < Re < 1.1 * 10' and 0.3 < Fi 5 2.0.
Analysia of the mode structure of the lee-wave field is provided. Msndmum increase of the drag
coeffiat value WC is obtaiked for regimes of the first mode effective gexeration. Cosiderable
drag coefficient decrease for Fi > 1.0 caused by the walm turbulizat, no is comirmed by internal
waves characteristics measurements. The certain dfference between lee waves and o1lapse waves
is observed.
The comparative aalysis results of drag coefficient versus Fioude number both for two - layered
and continuously stratified liquid in the range of F•oude numbers Fi - 1 are presented. Com-
parison of AC: (Fi) dependences showed an existence of linear dependence of Froude numbers
Fi for continuously stratified fluids and, square dependence between Pi for the two - layered ui-
quid and an exponential stratification.

1. Introduction
The effect of fluid stratification on drag parameters of a submerged sphere moving

uniformly in the horizontal direction has been investigated both theoretically and exper-
imentally.

Research of Hanataki (1988) is devoted to numerical studies of the relationship be-
tween the drag coefficient C: and the parameters of three - dimensional flow of viscous
incompressible exponentially stratified fluid. Calculations were performed for the con-
stant Reynolds number Be = 200 and yielded the results close to the experimental ones
for mentioned conditions.

There are few experimental works conseruing study of drag on uniformly driven solid
bodies in a stratified fluid.

In the work by Nikitina (1959) experiments on drag value measurements of a ship
model mowing at a free surface of a two - layered fluid with various layers thickness has

Two papers are available now (Mason 1977; Lofquist & Purtell 1984) dealing with
experimental dependences of the coefficient Cm versus the Froude number for a sphere
moving in an exponentially stratified fluid, as well as of its variations AC: relatively to
the value Czo in a homogeneous fluid.

Fluids with more complicated stratification profiles were not treated experimentally
from this viewpoint.

'Emal olgaOkydroainov.su



A limit of exerimental data is also the reason of any correlation analysis absence for 4
the drag coefficient as a function of Fi for different stratification cases.

2. Experimental equipment

The aim of present experiment was to confirm and evaluate the influence of thermodine
- wise stratification on the drag force and the drag coefficient of a submerged solid sphere.

All the experiments have been fulfilled in a thermostratified laboratory tank 1.6 m
wide, 1.2 m deep and 5 m long. Horizontally homogeneous thermal stratification, provided
in the fresh water, presented a scale model of the ocean thermocine.

Stratification - making system consists of a refrigerating machine connected with heat-
exchangers arranged horizontally along the tank wars inside the tank. It provides the
lower water layers temperature of about 4-. 600 and upper layers with the temperature of
18 + 200C. As a result of the system's action and due to natural convection in heated and
cooled water layers a, scale model of natural ocean thermocline is provided in the tank.
The thermodine of a thickness d = 0.17H has its center's depth h = 0.33B1.

Usually it takes about 8 + 9 hours to "boil" a stratification in the homogeneous liquid
with the temperature t = 100 and 3 + 4 hours to restore it night later.

A sphere of diameter D = 150 mm was towed with constant velocities U = 0.014 +
0.09 m/3 at the depth of about the thermocine centre h = 0.32 m -Y 2D, which excluded
free surface effect. The Reynolds and ]roude numbers varied in the ranges 1.6 * 103 <
Re = !L* _ <1.1 * 104 and 0.3 < Fi = W :_ 2.0 respectively. Here Y is the fresh water
kinematic viscosity coefficient for the temperature 120C ( water temperature in the center
of the thermocline ), N = -•.(z) is the madamum value of the Brunt-Vaisala frequency:

N(Z) (-, )()

where
g acceleration due to gravity;
Po water density at the center of the thermocine;
dp/dz density variation due to the temperature variation at the horizon.

During the experiment the maidmum buoyancy frequency N'(z) was kept equal to
0.30 :k 0.02 a-' at the depth z = 0.31 :k 0.01 m. The vertical temperature profile has
been recorded before every towing motion and the Brunt-Vaisala frequency N = f(z)
was calculated.

The drag force Ax was measured using a towing dynamonmeter presented a two -
armed lever with arms ratio L, : L2 = 20.9. The longer arm is formed by a towing knife
having a cross-section in the form of the wing profile. The rotation axis of the lever
is attached fixedly to the towing carriage normally to the trajectory of the towed body
motion. The drag force was transferred from the towed body to elastic element which
deformation caused variations of electric signal value. A differential inductive sensor with
fixed coils and a core connected to the elastic element, was used as an energy traneducer.

3. Experimental results

The drag force versus the sphere motion velocity Ax = f(U) (is plotted in Fig. 1)
in the presence of the thermoclie stratification yields appropriate values of the drag
coefficient



CZ 2Rx
po*is (2)

where
Rz the measured drag force;
Po the water density at the thermodine centre horizon;
U the towing velocity;
S = ? D2/ 4 the body's cross-section.

ACX = CZ - CZo, (3)

where Cm. is the drag coefficient of a sphere in the homogeneous liquid.
Maximum (threefold) increase of the towing drag coefficient is observed at the Froude

number Fi = 0.58 (U = 0.026 m/s) (see Fig. 2).
The internal waves (1W) field parameters were recorded by vertical chains of sen-

sors. Four sensors were arranged one below another in the thermodine zone with spacing
0.07 Ti at a distance of 3D from the sphere's trajectory. 1W modes are represented as
eigenfunctions qi(z) of the Sturm-Liouville boundary-value problem

d q,, + qk!(N2/ - 1) 0 (4)

q,,(O) = q,,(H) = 0
where
q. the n-th mode eigenfunction;
k., the n-th mode wavenumber;
w the 1W frequency;
N the Brunt-Vaisala frequency;
B the tank depth.

The problem was solved under the condition of weak dispersion of IW modes (w C
NV..(z), Cp. = ,,Ik. = const). By expanding the displacement of isotherrs in n
modes and by minimizing rrns error of measured isotherm oscillations we can find the
mode amplitudes.

Parameters of /W analyzed simultaneonuly with drag measurements evidence that
while the velocity of body's motion increases in the range mentioned above, the number of
modes excited by the body increases also. The drag coefficient increases with the number
of modes and has a maximum value for U = Cpl. Thus of appreciable importance is
the first mode which is also confirmed by comparing data of IW mode analysis with the

xCz(Fi) dependence (see Fig. 2). Fig. 3 exhibits spectra of the first three modes at
various velocities of sphere motion. It can be readily seem that as the velocity (or the
Froude number) grows, the first mode becomes predominant.

The prevalent excitation of the first mode while velocity of the sphere motion increases
is observed when the sphere moves below the thermocline (z = 0.46 in). Oscillograms of
modes for this case are shown in Fig. 4. The growth of the amplitude for Fi > 1.0 is
due to IW generation by the wake and differes definitely from the case of IW generation
by the pressure field of moving body (a phenomenon observed also by Hopfinger et al.
(1991)). Experiments with a streamlined body (an ellipsoid of revolution) showed that

I
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lee 1W have maximum amplitude for the same body's velosity ( U = Cp 1) without its
grouth for higher values of U. j
4. Comparison of the wave-drag coefficient versus the Iroude number

for different stratification profiles

The comparative analysis results of drag coefficient versus Floude number based on
drag measurements of uniformly and horizontally driven models both for two - layered
and continuously stratified liquid (exponential stratification and thermocline) in the range
of small Froude numbers (Fi ,,. 1) are also presented.

As a towed body for continuously stratified liquid a sphere was used. In the exponen-
tially stratified fluid (Lofquist & Purtell 1984) the sphere of diameter D = H/8 was towed
at the depth H/2 (H is the fluid depth). In the case of two - layered fluid (Nihitina 1959)
the ship model with the draught R = (0.54+ 3.0) R, (H, is the upper layer thickness)
has been used.

Froude numbers were calculated in accordance with following eqations:
- for the two - layered model

Fi = UtCo (5)

- for the cortinuous stratification

Fi = U/(N * 2R) (6)

where
U body's velocity;
Co internal wave speed in the two - layered liquid of finite depth;
A characteristic vertical body dimension (= D/2 for bodies of revolution);
I the Brunt-Vaisal frequency (N = N.(z) for the thermocline).

Experimental results maLching method was based on the dividing - streamline concept
(Snyder et al. 1985; Hanazaki 1988) that all the kinetic energy of the stationary and
poteatial (for Fi < 0.5) flow passing around submerged body in the hydrmoaic limit is
converted into potential energy of the verticay displaced fluid pacd.

Resulting formulas for the dividing streamline displacement A = R - z, versus FRoude
number for the flow of uniform velodty are as follows
- for the two - layered fluid

S= 1/2 * H * F•2  (7)

- for the fluid with constant density gradient and for the thermocline, presented by an
exponentially stratified layer placed between two homogeneous layers

A = R* 2Fi (8)

For wave - drag coerucieab-, vers..s i,-.e .umblr f.,.wn,., dependences were oh-
taied:

AC.-v(Fi) = K * ACju.(Fi) (9)

Ac.r,(Fi) = AC",w(Fi) (10)

with
j.U,, K, •i,.p(11)



Fit.. = K2 * Fi.jp (12)
where K, K1 , K2 are coefficients depended on the body's geometry and stratification
parameters in the certn experiment.

Explanation of the dependence (11) and the value of coefficient K1 follows from the
comparison of Eqs. (7), (8) and the condition of relative displacements A/R and A/i/ 1
equality:

2 2Fi.= 1/2 Fz,1&,,, (13)

Ki = •,.W./Fi,.. = 4 (14)

K1 values obtained from an experimental data comparison are in the range 3.88+4.16.
Results of adaptation of initial curves ACz (Fi) for the two - layered fluid in accor-

dance with Eqs. (9), (11) are presented in Figs. 5 a, b (cam when the ship model's
draught is more and ess thln the upper layer thikmes respectively).

The coefficient K2 value in Eq. (12) has been defined taking into account the fact of
similarity of 1W propagaon in continuously strifiaed fluids and equality of equations
describing wave processes in one - waveguide systems. In particular, dispersion depen-
dence for fluid with N = coast and for the thermocline, modelling by the exponentially
stratified layer contained between two homogeneous layers,

V2 k%2-- (15)

where
W 1W frequency;
N the Brunt - Vaisala frequency;
k, n-mode horizontal wave-number;
k,,, = irn/hl n-mode vertical wave-number;
hl characteristic vertical waveguide dimension.

From Eq. (15) it follows an equalion for dimezionles k..

(k, MY = 1 .+ (7rn) (16)

where Fii, = Cp, / N h'.

As Froude numbers Fi, = Fi * 2R/h' are of order 10O2 for Fi < 0.5 it follows from
Eq. (16) that k, >> k,. Eqs. (15) and (16) may be rewritten now

C 0=W N (17)

Th *_h Fi 2R (8

It seems to be natural to assume the pbhe speed equahity to be the aimilarity condition
for continuously stratified fluids Cpj p = CP 1therm. Under this condition the Brunt



- Vaisala frequency provided the similarity of ACz(Fi) for continuously stratified fluids
will be defined from Eqs. (17), (18) as follows

.p = Cptum/(Fi v * 2R..) (19)

In the comparison of experimentally obtained dependences ACz(Fi) the particular
value of N has been defined from Eq. (19) for the maximum values ACz.(Fi). The
obtained value of Nw, = 2.73 3-1 allowed to count the similarity coefficient of Fi for two
stratification profiles

K /i'= (20)Kp•= m * Kaj

where
Kpi proportionality coefficient for Froude numbers;
Kap = 1 similarity coefficient for phase velocities;
KN similarity coefficient for Brunt-Vaisala frequencies;
K.R geometric similarty coefficient.

The theoretically obtained value of Kp - = 3.73 equals to the result of
experimental data adaptation. Curves of ACz( Fi)., and Cz(Fi) ,,,, whereFi,
is trandonned in accordance with Eq. (20), are presented in Fig. 6.

To explain the presence and relative position of nonmonotonicity regions in both curves
(Fia, = 0.5, FAa,.. = 0.4) we can use the diagram of wake regimes past a sphere moving
in the exponentiafly stratified fluid (Lin et al. 1992) (Fig. 7).

It's obvious that the rgion of lee 1W existence is limited from above by the Froude
number FA = 0.4 (with the transitional sone at Fi = 0.4 + 0.5) in the Reynolds number
range Re = 200 + 2000. This is the reason of the wave-drag coefficient insensitivity
from Re for Fi 5 0.5 (Fi < 1.0 in their definition) noted by Lofquist & Purtell (1984)
(corresponding characteristics are shown in Fig. 7 by dashed lines).

Characteristic line for the Brunt-Vaisala frequency N = 2.73 s-1 obtained under the
condition of similarity of ACz(Fi) is shifted to the diagram region where position of lee
waves upper boundary becomes sensitive to Re. Comparing the nonmonotonicity regions
position (points no. 4- 6 in Fig. 7) we can find that their presence and relative position
are connected with the change of 1W generation regime by the vortex production.
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INVESTIGA' ION OF THE VERTICAL WATER EXCHANGE IN THE

BALTIC SEA

R.V.OzMIoov,- A.V.OZMIDOVA

Institute of Oceanology, Russian Academy of Science, Moscow

Abstract

Estimates of exchange process intensities between the
deep and surface waters in the deep basins of the Baltic Sea
are obtained. For such estimations two methods - the integral
(by general balance of salt content in the sea) and the
differential one (by approximation of salinity vertical
distribution curves with the diffusion equation solution) -
- were used. Both methods lead to values of the vertical salt
diffusion coefficient close to 0.01 cm s-'and to valu.es o,.
salt flux through the pycnocline of magnitude order 10 -1 0--•
g cm-s-.

In the deep basins of the Baltic Sea a sharp vertical
water stratification is known to be observed /1, 2/ that is
due to the presence of water with higher salinities and
relatively high temperatures at the deep horizons of a basin,
from one hand, and less salino water characterized of large
seasonal temperature variations in the upper layers, from the
other hand. The deep water has its origin in the North Sea
water mass that intrudes at times into the Baltic through the
shallow Danish sounds connecting the North and Baltic Seas.
The surface waters are formed in the Baltic itself through
the interaction of river discharge, precipitation,
evaporation, the exchange with the deen waters, as well as
n thermal processes in the water mass interior and at its

boundaries.
The salinity in the bottom layers of the Southern Baltic

can reach 15-20 /oo and-In the northern regions it decreases
to 7-10 0/oo. The underwater sills separating deep basins are
the obstacles to th.le northwa. penet..•ion of the saline
water, so that the lower layers in some basins are often
isolated from the saline water of adjacent basins. The water
exchange between basins and the influx itself of the North
Sea water that is rich in salt and oxygen into the Baltic Sea
is not a regular process. It is of sporadic nature and occurs
in the form of individual Inflow spells of water mass that
depend on a number of meteorological and hydrological factors
both in the Danish sounds and in the North Atlantic. The
frequency of the North Sea water inflow spells is not high.
Thus some twenty spells were registered during 1950-1968, the
spell of 1951 being an intensive one when about 200 Im of
the North Sea water penetrated into the Baltic Sea / 1 1.



According to observations of this inflow spell the North Sea
water reached the Gotland basin in 3 months, and the Landsort
basin in 6 months after the passing through the Danish sounds.
An intensive inflow spell was also observed in the winter
1975/1976, when the North Sea water spell reached the Gotland
basin only in a year and increased the bottom water salinity
from 12.5 to 13 c/oo / 6 /. According to the data now
available a very intensive inflow spell occured as well in
January !993. At the present time the information of the
North Sea water movement over the Baltic is highly patchy and
contradictory,but it is evident that this "new" water had not
reached the Gotland basin by the vid of Aprill 1993.

There is a layer with high gradients of temperature,
salinity and density between the upper brakish water layer
and deep water mass in the deep basins of the Baltic. It
lies at the depths down to 70-80 m depth in the central part
of the sea. The water density Jump in this laver in a number
of casses attains to three and sometimes more conventional
density units which hampers vertical exchange between the
layers. When the inflow of a North Sea water new portion does
not occur for a rather long time, the stag•nation phenomena
develop in the deep basins. The all oxygen brought in uy the
North Sea water is used up owing to oxidation of organic
matter sinking from the upper layer and the hydrogen sulphide
begin to store in the deep water. But the upper layer is well
stirred due to wind action and vertical winter convection.

The upper water layers directly influenced by the
atmosphere change rapidly their properties.With the beginning
of the spring heating an upper warm. water laver is formed
separatetd fr'm !Qwer llaers o- a theriocline, t.e a itude
and the depth of which depend on heating duration, weather
conditions and storm forcing. In the fall when the water is
cooling the upper heated layer gradually vanishes and the
conditions of convective mixing are established that expand
down to the main pycnocline but do not destroy it.

Thus the deep water "ventilation" in the sea basins is
mainily caused by the sporadic inflows of the North Sea water
and by the rather impeded vertical exchange with the tupper
layers through the pycnocline.At the present time quantiative
parameters of these processes are too porly known. The
prediction of the North Sea water inflow spells into the
Baltic is now impossible because of a great number of poorly
known factors leading to such spells. And observation of the
phenomenon requires a systematic monitoring not only in the

anish sounds but also in all the central Baltic. The aim of
the monitoring should consist not only in the establishing
the fact of water inflow spell but also in tracking the North
Sea water subsequent expansion and its transformation during
the movement. Organization of such a monitoring is to be a
concern of all the Baltic states since a good prediction is
of the paramount importance for planning fishery quotas and
elaborating methods of the sea pollution control.

At the present time quantitative characteristics of the
water exchange across the main thermobalocline in the deep
basins are in fact unknown. Some authors ( see, for exampls
/2/) think that it is possibile to neglect such exchange and
assume that the deep basin ventilation is realized only due



to the processes of horizontal advection. However it is
avident that such a point of view is wrong, for all the sea
salt brought through the Danish sounds by the North Sea water
and then spread in bottom layers into the deep basins has
(because of the mean steady-state hydrology of the sea)
finaly to rise to the upper layers and be carried out by
surface cuxrrents (in brakish form) thrcn'igh the os-cxds ba
into the North Sea. So in the deep basins of the Baltic the
vertical salt transport through the thermohalocline must
exist that tnsures such salt balance. Similar reasoning can
naturally be repeated both for temperature and for example
orxgen in the North Sea water. But for these properties such
constructions become more complicated by the necessity to
take into account possible sources and sinks in the water
body owing to oxygen consumption by oxidation processes and
heat generation in the this case as well as due to heat
exchandge between the water mass and the bottom.

One can try to estimate the mean vertical transport of
the salt (and thus water exchange) through the
thermohalocline in the deep basins using the above rerroning
if one knows the thermohalocline surface area and tI. mean
intensity of the salt transport through the Danish soiut. j. If
we assume according to 1/ / that the area of the
thermo±alocline is 80000 km and take the above cited value
200 km as a maximum unit inflow spell of the North Sea
water with the salinity (when it passes over the sills
Darsser and Drogden) close to 20 °/oo / I /, then to estimate
the mean vertical salt flux through the thermocline it would
be necessary only to determine the duration of this saline
water relaxation. Since such large inflow spells of the North
Sea water occur rather rarely, we shall take 10 years as a
rough estimate of the relaxation time. Under such assumptions
we shall have the mean vertical specific salt flux through
the thermohalocline in the deep basins:

Q = (200 Ra * 0.02 g c<-93 )/(80000 k2 * 10 years) =

= (2 * 10 c7 2 * 10-2 gc 3 )/(B* 1 *

* 3.15 1 8  ) 1.58* 10- g 3- ci-m'.

This estimate is certainly vwry crude because of approximate
values of the quantities used in the calculation. Besides,the
vertical salt flux is nattura!!y not 'mniforvm over the whole

Qirt r * * - "'*""' - . . -L t , s E1 'j '

areas of the thermohalocline tapering at shallow water, where
the phenomenon of internal surf with breaking of internal
waves can exist, which has to lead to more intensive water
mixing compared to the exchange rate in the regions remote
from the shallow waters.

To clear some problems on water mixing processes in the
Baltic sea the 29-thi cruise of the r/v "Professor Shtoclunat"
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was arranged and carried out in spring 1993. The information
on the cruise route and the measurements realized during the
cruise are given in / 3 /, The main work in the cruise was
carried out in the Gotland basin and Slupsk trough, where 11
scanning sections of 427 n.m. full length and 2281 scannings
were fulfilled using a towed STD-sound. As a result of the
measurements detailed tbree-dimensional pictures of
temperature, salinity and density fields as well as
information of their ,variability in a wide range of spacial-
-temporal scales were obtained.

50

ISO

Fig. 1. Examples of typical vertical profiles of
temperature T, salinity S and
convectional density D of water in the
Gotland Basin of the Baltic Sea after the
measurements in April 1993 in the 29-th
cruise of r/v "Professor Shtockman"

In fig.1 as an example typical vertical profiles of
temperature, salinity and density at one of the stations in
the Gotland basin are shown. A two-layered water structure is
clearly seen with a layer of sharp gradients separating the
upper water well-mixing by convection from the deep saltier
and waiier water. We observe that the salinity plays here the
m,,n. part in the increase of the bottom water density whereas
the temperatire contribution into the density variation does
not exceed 3% of the salinity contribution.In this connection
the following calculations will be done using the salinity
profile data. In fig. 2 the vertical salinity profile S(z) of
fig. 1 is shown in an enlarged form (curve 2). The curve
appearance at the depth interval from about 87 down to 152 m
suggests the approximation of it by the solution of the one-
dimensional equation of vertical salt diffusion as follows:

,.LS'z, /'t . = te o .• , (1)
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Fig.2. Approximation of a vertical salinity profile (curve 2)
by the one-dimensional diffusion equation solution
(curve 1). Straight lines 3 correspond to asymptotic
values of the surface and deep water salinities.

where S(zt) - salinity as a function of the vertical
coordinate z and time t , a- the vertical salt exchange
coefficient ( diffusion coefficient ) . If we place the
coordinates origin in the mid of the halocline and direct the
z-axis downward then we ca obviously take the following
boundary conditions for the equation (1):

S(z,t) Z.=W = S i SLz,t)IZ=..W = S2 , (2)

where S - salinity value at an infinite depth that is
assumed "close to the salinity value in the lower layer at a
distance large enough from the halocline, S2 - an asymptotic
value of salinity in the upper water layer.

It then we assume that the interface between the upper
and lower layers immediately after an inflow spell of the
North Sea water (t = 0) is not yet eroded but has a stepwise
form, the initial conditions for the equation (1) would be:

ii
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S,• 0 ) = ' 3)

The -UiJ2LA L, t1i. CA, with the boundary
conditions (2) and the initial conditions (3) would be /5/

1 (z-•)2 '
S (z,t') = S +- ------- J' exp [ - ------ - , (4)

where 3 = J -. the integration variable.The, e4resion (4) by variable substitution (=--/2.t =is reduced to:

3(z, t) = s + fJ exp, I- j (5)

where r, -a new integration variable.
In fig,2 a graph of the second item in the formula (5)

is shown ( curve 1). It is k:nown as error integral and
tabulated for example in /5/. The error integral attains the
value of one fourth of the salinity difference AS at the
distance of approximately 17 . from the inflexion point of
the curve 1. But according to the tables the arror integral
would take this value when ' = 0.48 . Then we have 0.48=1 .7 *
* 10/24at. To estimate the diffusion coefficient using this
formula it is necessary to accept a value of diffusion
duration t.Let us take it by analog with the above reasoning
to be equal to 10 years. Then the estimate of diffusion
coefficient *- would be close to 0.01 Om 8-". This is a very
small value but it is much more than the value of the molecu-
lar salt diffusion coe.ficient in the sea water that has the
magnitude order of 10-cm 2 /4/. Thus the calculation made
shows that the salt exchange (and therefore the water
exchange as well) between the deep water and the surface
water in the deep basins of the Baltic does exist and has a
certain quantitative characteristic. Let us further estimate
specific vertical salt flux Q tjiat is deterrmined by the
d ffusion coefficient .e =0.01 cme-2. As is known the flux Q
is determined by the formula:

•. = - .. (c5/ci'), (6)

where ,S/!Jz - the vertical salinity gradien+ Qt an.



observation point.

of the curve I (fig. 2).Here the vertical salinity difference
is clos to 1:1o.: per 25 m and consequently fqr the mean salt
concentration gradient we have cL/c.z=4 * 10- g cnCsL. This
gradient value multiplied by the value of the diffusion
coefficient, we have the specific wertical salt flux
•4*1C"r c-",.- ,i.e. approximately four times less than the
estimate of Q, mode above using integration method. Such a
discrepancy between the (2 estimates is quite explicable for
using the integration method we estimated the salt flux
under assumption of transport of all salt mass from the deep
layer to the upper one whereas the W` estimation by
differential method (by the formula (6)) we took into account
only a partial transport of the salt stored in the
lower layer to the upper one as it follows from fig.2.
Besides, the calculation carried out does not take into
account the boundary effects at the tapering thermocline in
the shallow waters that can as was mentioned above be
important for water exchange of the bottom water with the
overlying fluid layers.
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Turbulent Mixing in the Oceanic Boundary Layer
Due to Internal Wave Reflection from Sloping Terrain

Donald N. Slinn and James J. Riley
University of Washington

Seattle, WA 98195

1. Introduction

An improved understanding of vertical mixing in the ocean is an important problem in physi-
cal oceanography. Large-scale dynamic models require accurate parameterizations for turbulent
mixing to make realistic predictions for the transport of heat, salt, and chemical species. Other
important processes also involve vertical mixing. For example, vertical mixing supplies the bi-
ological ecosystem with necessary ingredients, as heavy, nutrient rich bottom water is lifted to
the surface to support plant and animal life. The ocean is stably stratified, which acts to inhibit
vertical mixing. Munk (1966) has show that a basin-averaged vertical eddy diffusivity of roughly
r.- =10- ml/s must exist to balance the effects of upwelling and downward diffusion. Field stud-
ies, however, have failed to observe such large vertical diffusivities in the ocean interior. Typical
measured values for vertical diffusivity in the open ocean are in the range of r. = 1.2 x 10-5 m2/s
(Ledwell, 1993). The conclusion from the experiments is that 80-90% of the vertical mixing is
not taking place in the ocean interior.

Instead the mixing is expected to occur at the boundaries, near continental slopes, island.,
seamounts, and other topographic features. The idealized picture is one of active mixing in the
benthic boundary layers with mixed fluid communicated to the interior along constant density
surfaces. The exchange of mixed boundary fluid with interior stratified fluid provides a mechanism
to weaken the interior density gradient, and continuously supply fresh stratified fluid to be mixed
in the boundary layer. The overall process can work efficiently since horizontal advection is not
inhibited by the surrounding stratification. Recent field experiments (Eriksen, 1985, 1994) have
suggested that the oceanic internal wave field can provide a sufficient source of energy to activate
strong mixing near sloping boundaries and account for a significant portion of the overall oceanic
vertical mixing.

The angle of propagation of energy of an internal wave depends upon the wave frequency,
w, and the background density stratification according to the dispersion relation W = N sin$,
where N is the buoyancy frequencbystrt i = ficaionaccrdiand 0 is the angle between
the group velocity vector and the horizontal. When an internal wave reflects from a larger-scale
sloping boundary, its angle of propagation with respect to the horizontal is preserved. This can
lead to an increase in the energy density of the reflected wave, as illustrated in Figure 1 for a
linear internaJ wave ray tube, as the energy in the oncoming wave is concentrated into a more
narrow ray tube upon reflection. Probably the most effective situation for boundary mixing
arises when an oncoming wave reflects from a bottom slope which nearly matches the angle of
wave propagation. In this case a small amplitude oncoming wave may be reflected with large
amplitude and exhibit nonlinear behavior. The nonlinearity can cause the wave to transition
to turbulence near the boundary and enhance mixing of the boundary layer fluid. The angle of
wave propagation such that the wave reflects at the same angle as the bottom slope is called the
critical angle. In this case linear wave theory predicts a reflected wave of infinite amplitude and
infinitesimal wavelength and the trapping of the oncoming wave energy in the boundary region.
In such a case linear theory is clearly inadequate to predict the flow behavior, as nonlinearities
and turbulence come into play.

In this paper we present the results of numerical experiments simulating the reflection of
internal wave trains from bottom terrain of various slopes. The numerical experiments comple-
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Figure 1: Ray tube diagram of internal gravity wave reflection from sloping terrain illustrating
the basic geometry of the problem.

ment previous field and laboratory studies (Ivey, 1989; Taylor, 1993) with the ability to study the
energetics and turbulence dynamics in detail. Additional strengths of the numerical approach
include facilitating both flow visualization and parameter studies on the influence of key physical
and nondimensional quantities. It offers the ability to simulate critical angle reflection down to
slopes of about 3 degrees, which are typical of oceanic conditions (Thorpe, 1992).

2. Model Description

The model utilizes state-of-the-art numerical techniques to solve the three-dimensional, incom-
pressible Navier-Stokes equations within the Boussinesq approximation. A detailed description
of the physical and numerical model is to appear in a separate paper (Slinn and Riley, 1994).
'rhe problem of interest is to simulate the reflection of internal waves from the ocean floor. The
buoyancy frequency N is taken to be constant, and a steady stream of oncoming waves is gener-
ated in a wave forcing region located away from the ocean floor. This is accomplished by adding
localized forcing terms to the governing equations to produce a monochromatic train of waves
with a specified wavelength and frequency. The waves propagate downward at a specified angle
8 with respect to the horizontal, with group velocity C,, and wavenumber k = (k, 1, tn).

Figure 2 shows isopycuals taken at an intermediate time from a numerical experiment in which
the internal wave train is propagating in a vertical plane (X', z') normal to the terrain surface. It
represents a two-dimensional cross section of the density field of a three-dimensional simulation
taken in the plane of the slope. The constant density contours indicate the amplitude of the
oncoming wave train as well as show the development of a region of strong density gradient near
the bottom boundarj. The oncoming waves are of moderate amplitude and approach the wall
in the plane of the :.lope. Here the bottom slope is 9.2 degrees and the fundamental irequeuey
of the oncoming wave is chosen so that the propagation angle matches the bottom slope upon
reflection, e.g. the wave is at the critical angle. The model is periodic in the z' and y directions
and the bottom boundary conditions are no-slip for the velocity field and adiabiatic (no source
of heat or salt) for the density field.

The numerical scheme employs the pressure projection method, implemented with a variable
time step third-order Adams-Bashforth scheme to achieve high temporal accuracy. Padi series
expansions are used as the basis functions for spatial discretization. The method is formally
fourth-order accurate in space and more accurately represents a wide range of wavenumbers than

2
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Figure 2: Density contours for an oncoming wave train generated in a forcing region above the
bottom boundary propagating downward with phase and group velocities as indicated.

traditional difference schemes (Adam, 1977; Lele, 1993). The pressure field ii determined by
solving a Poisson equation using Fourier tranforms in the lateral directions and a fourth-order
direct solution method in the vertical direction. A Rayleigh damping sponge layer is used at
the top open boundary to mimic.a radiation boundary condition. A variable grid in the vertical
direction is used to achieve a higher density of computational nodes near the ocean floor in order
to resolve the boundary lzyer. The computations were carried out on a numerical grid using
129 x 129 x 130 grid points. Care was taken so that the basic features of the flow are resolved
throughout the simulations. The Reynolds numbers for the simulations, Re, based upon the
current speed U and wavelength A, are between 500 and 3500.

3. Results

Figure 3 shows a time series of the flow development throughout a period of wave breakdown
visualized by constant density surfaces. The figures focus on the near wall region. The dimensions
are one wavelength, A, in the z' direction and one horizontal wavelength, A. = 2vr/k, in x'
direction. The figures are taken from a simulation with Re = 3500 for the critical angle case with
a bottom slope of 9.2", the same case as shown in Figure 2. Here time is nondimensionalized by
the buoyancy frequency and the wave period is 39.2. At time t-70 the wave train has reached the
wall and a steep gradient in density has formed in the x'-direction. This feature, called a thermal
front by Thorpe (1992), moves upslope at the x' component of the phase speed of the oncoming
wave. As time progresses wave overturning develops in the lee of the thermal front, and at time
t=88, statically unstable fluid is apparent near the center of the domain. Another signilicant
feature is also apparent at times t=88 and t=94. Near the wall a region of steep density gradient
has developed in the z'-direction and across the entire breadth of the domain. As time continues
the overturned regions break iown into small scale turbulence and dissipate the wave energy in a
three dimensional fashion. Also, the steep density gradient in the z'-direction is relieved so that
by t=109 it is no longer a dominant feature of the flow.
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Analysis of the velocity fields, not pictured here, indicates several small.eddies of recirculating
fluid. The eddies are associated with the regions of overturned fluid and are three-dimensionA
in character. When the strong density gradient in the z'-direction occurs, a strong region of
downslope flow is produced near the wall similar to the backwash produced on a beach after a
wave has broken on shore. During this phase the backwash creates a slippery boundary layer
facilitating the breakdown of the oncoming wave further away from the wall.

Further analysis indicates that the flow is quasi-periodic, going through a cycle of strong
mixing and small-scale dissipation, followed by a quieter period of relaminarizatio'n aud weaker
dissipation. The picture at time t=133 is similar in character to the flow at about t=81, and
t=144 compares closely to the picture at t=94, showing that the flow is undergoing another
mixing cycle. Some of the simulations have been run out for 10-20 wave cycles, and we conclude
that the flows are quasi-steady although the background interior density stratification becomes
gradualiy weakened throughout the process.

Statistical analysis of the overturned regions of fluid indicate that the static instabilities
mainly occur within a distance of A/3 of the wall, and are present in the boundary layer region
about 50 percent of the time. This result is typical of critical angle cases for many different slopes
when the Reynolds numbers are high enuugh for transition to turbulence to occur. Another
measure of the local static instabilities is their frequency of occurrence at a fixed location. For a
fixed location within the turbulent boundary layer the maximum frequency of static instability
is about 15 % of the time, and it happens at a height of about A/8.

A key issue related to the wave breakdown process is whether the turbulent boundary layer
exchanges fluid with the interior domain or whether it predominantly continues to mix the same
fluid. Two experiments were designed to study this issue. In the first the boundary layer fluid is
"dyed" with a passive tracer after the flow has reached a quasi-steady state of mixing. Then after
a couple of wave periods the flow is examined to determine if the dye is still predominantly located
in the boundary layer region, or if it has moved off the wall to the interior stratified regions. For
the case presented here a scalar field with an initial linear gradient in the z' (offwall)-direction
was chosen and allowed to develop for two wave periods. The initial concentration, or magnitude
of the scalar field, is highest at the wall, its value falling off with height. Any net transport of
dye due to the wave shear is approximately eliminated by examining the results after an integral
number of wave periods. The second approach is to track fluid particles which are releAsed at
various heights, and to determine if a statistically significant number of particles escape from the
boundary mixed layer, or if particles initially outside the boundary layer are entrained into it.

Figures 4-7 illustrate the results of these experiments. Figure 4 shows the density field for
the lowest vertical wavelength for critical angle reflection over a 200 bottom slope. The density

field indicates that the mixed layer has a thickness of about .25 A. These figures are taken at
a time when the flow field is quasi-steady, and are representative of the initial and final states
of the flow for the dye experiment. Figure 5 illustrates the velocity vectors in the same two-
dimensional plane. Here the dominant feature is the shear of the oncoming wave, modified
somewhat by recirculation and turbulence in the near wall regions. Fig-re 6 shows the difference
in concentration of the scalar field between its initial and final states. The solid line contours
indicate that the concentration of dye (scalar) is higher than in the initial state, indicating that
fluid has migrated away from the wall in those regions. The dashed line contours indicate regions
in which more dilute or lighter dyed fluid has moved downwards. It is evident that the boundary
layer region contains predominantly lighter dyed fluid after two wave periods. The magnitudes
of the highs and lows indicate the fraction of a wavelength in the vertical (offwall) direction
that the scalar tracer has moved. For example, the high and low peaks at a height of about .4
A are .268 and -.275 respectively. This indicates that the fluid has traveled over .25 A in the
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offwall direction, a distance greater than the nominal boundary layer thickness. By comparing
the slope of the scalar transport contours with the slope of the isopycnals in Figure 4 it is evident
that the advection process has favored transport along the constant density surfaces since the
iso-scalar-transport and isopycnals are predominantly aligned with one another.

A significant feature of the boundary mixing process is that the internal wave field outside the
boundary layer region plays a very active role. It serves to continuously pump fresh stratified fluid
into the mixed layer, while simultaneously extracting the mixed fluid. This process is suggested
by the strong internal wave shear seen in the velocity field in Figure 5. We refer to this exchange
of boundary mixed and stratified fluid as internal wave pumping.

Figure 7 shows the traces in the z-z plane of the three dimensional trajectories of a set of
20 (out of a total of 400) fluid particles released at a height of .2 A from the wall, well within
the mixed layer. The particles are followed for one wave period. If the particles were released in
a region of linear wave dynamics then, after one wave period, they -would return to their initial
locations. Here we see that several of the particles have escaped the boundary layer altogether,
while many others have been more deeply entrained near the wall. After each additional wave
period the particle dispersion has increased and appears to be more random.

In the analysis of the simulations, emphasis is given to the energetics of the flows. Table 1
preseats the mixing efficiency for a series of simulations for a number of different critical slopes.
The mixing efficiency is defined as the ratio of the total potential energy dissipation to the total
work u&-n to generate the oncoming wave train, and is a measure of the amount of wave energy
converted into background potential energy through mixing. We find, for these critical angle
simulations carried out for a wide range of bottom slopes and Reynolds numbers, that all the
mixing efficiencies are near 35%. A typical energy budget for the oncoming waves is that about
35% of the wave energy goes into mixing the stratified fluid, 55% is dissipated as heat, and
approximately 10% of the incident energy is reradiated away from the turbulent boundary layer
by smaller scale gravity waves.

Table 1. Mixing Efficiency at Critical Angle

0 Slope [Reynolds No. M: 'ng Efficiency
30" 3000 0.37
300 800 0.37
20o 1800 0.36
200 1100 0.35
9.20 3540 0.35
9.20 2680 0.37
9.20 1950 0.36
9.2- 1210 0.38
7.70 3000 0.35
7.7* 1500 0.33
7.70 750 0.37
5 3300 0.37

5* 2300 0.39

5- 1800 0.38
3.4° 2520 0.37
3.4* 1320 0.35
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Figure 6:Saatrnprcotusilsrtgte distance dyed fluid has traveled in the offwafl
direction over the duration of two wave periods.

Figure 7: Particle trajectories over one wave period. The flu~id particles were initially release at
a heigh of .20A~ at a height within the turbulent boundary layer.
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4. Conclusions

We have shown some of the details of a fluid mechanical process involving the frequent breaking
of internal waves near sloping ocean boundaries, that likely makes a large contribution to the
vertical mixing in the ocean. We find that linear oncoming gravity waves transition to turbulence
when reflecting from a critical slope, and that the mixing efficiency of the process is about 35%.
For steeper sloping terrain, the transition Reynolds numbers, based upon wave current speed
and wavelength, for which vigorous three-dimensional mixing occurs in the boundary layers are
approximately 1000. Somewhat higher Reynolds numbers are required for transition for the more
shallow slopes. We find also that an intermittent turbulent boundary layer forms of approximate
thickness A/3 in which static instabilities are observed about 50% of the time.

One of the flow features most strongly evident is the existence of a thermal front which
moves upslope at the phase speed of the oncoming wave. For steep slopes (greater than 200) the
thermal front resembles a turbulent bore exhibiting nearly continous localized mixing, whereas
for shallower slopes (less than 100) the mixing is observed across the breadth of the domain and
is temporally periodic. For the small slopes the turbulence is forced by the oncoming waves and
the cycles of strong mixing and dissipation are approximately equal to the wave period. The
strong mixing occurs during the phase when the oncoming wave sets up a strong downslope flow
at the bottom boundary similar to the backwash on a beach.

We find that the mixing process extends into the interior stratified fluid and is not restricted
to a well-mixed boundary region. A key process in this interior communication is the internal
wave pumping of mixed fluid into the interior and stratified fluid into the boundary layer. A
net result of this process is a steady weakening of the interior stratification. Our results confirm
those from field and laboratory studies that conclude that wave reflection from critically sloping
terrain is a significant sink for internal wave energy.
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INTERNAL TIDAL AMPHIDROMES IN VESTFJORDEN
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N-7034 Trondheim, Norway

ABSTRACT

Vestfjorden is a very wide fjord to the east of the Lofoten archipelago at 67 - 68°N latitude.
The region is know for its productive fishing grounds and sea bird communities. Plans for
offshore oil exploration in this region require therefore a thorough evaluation )f the
environmental conditions in the sea. The tidal jets through the archipelago are importznt for

propelling the ocean circulation and interfacial waves on the pycnocline between the coastal
water and the underflowing Atlantic Water. In the present work, the focus is placed on
internal tides which affect both underwater communication and surveillance.

Laboratory simulations using diumat forcing in the 5 mn diameter Coiiolis basin ýt SINTEF
NHL show internal tidal amphidromes with a separation of 25 - 30 km. The wave phases.
obtained from photogrammetrical analysis of neutral buoys, imply a combined forcing from
the tidal jets and flow over the main, deep sill at the entrance. Maximum amplitudes over 15
m are observed between these sources.

1. THE IMPORTANCE OF INTERNAL TIDES IN FJORDS

Underwater communication depends on reasonably homogeneous acoustic properties. The
speed of sound is a function of temperature (T), salinity (S) and depth (-Z). The variations
of S ind especially T with depth and time complicate sound transmission in coastal and
frontal regions where a variety of water masses collide and are pushed around by wind and
tides. Stratified coastal waters are known to abound in internal waves.

Osborne et al. (1978) reported loss of contact with positioning hydrophones due to internal
waves during drilling operations in the Andaman Sea. These waves originated in a narrow
sound where tidal currents are strong.

Figure 1. 1 shows the bathymetry of the Lofoten region for our study. Tides are expected to
create internal waves at the sill to the SE of Rost and by the currents through the Lofoten
archipciago.

Stratification, topography and the rotation of the earth are all important for steering (internal)
interfacial waves along the pycnocline in a wide fjord like Vestfjorden. Relevant studies of
interfacial tidal waves in Norwegian fjords include Stigebrandt (1976) and Moen (1989).
Stigebrandt studied the propagation of internal waves from a sill to their shoaling along the
sloping bottom. Moen studied the propagation of internal Kelvin waves into a wide fjord. For
the present, very wide fjord, the effects of the earth's rotation are expected to be very
important. A relevant study of internal tides in a wide basin open to the sea was made by
Matsyarra and Ohwahi (1990). Their numerical model produced internal tidal amphidromes.
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2. LAORTOY ODEL OFATBOLFOANTOGRO

Internal waves in Vestfjorden were studied in a distorted stratified, rotating laboratory model.
3-D trajectories of neutral buoys embedded at various depth~s in the stratified flow were
recorded by photogrammetric measurements and automatic particle tracking. The phase
information derived from the particle motions was used to determine the direction of the
interfacial waves.

T'he relevant parameters of the problem ane the densimetric Froudc iiumberF =Ui'(.g J112"
and the Rossby number Ro = UIfL, where H = vertical length, L = horizontal length, U =
horizontal velocity, g' = reduced gravity and f is the Coriolis parameter. These give a
consistent set of scaling laws for which the ratio of natural to model time scales is

7ý= LI(g/'H,)'.

-2-



Horizontal distances in nature are 90 000 times as large as model distances (horizontal length
ratio Lr = 90 000). The vertical scale is exaggerated such that 900 m is half a meter in the
model (height ratio H, = 1 800), giving a distorted model. The density gradients (Ap) in the

model are also exaggerated (by 84 %) (Fr' = 1/1.84). This is done to improve the accuracy
of the salinity measurements and to provide a time scaling, according to the Froude model
law, Tr = Ir (K g )-"t = 2880. With this scaling, a day is simulated in 30 s and the
regulations of the inflows are easy to follow on the laboratory clock. For the present study.
however, the more appropriate time scale is the tidal forcing with a period of a pendulum day.
This is due to the fact that the vertical axis is tilted slightly to simulate the tidal currents over
the sill and through the Lofoten archipelago.

The model was used to simulate the transport of Atlantic and coastal waters through the fjord
system (McClimans and Nilsen, 1991; McClimans and Myhr, 1992). Details of the model,
scaling, and scale effects are given in Nilsen (1994).

3. MEASUREMENTS OF 3-D POSITIONS OF SUBMERGED, NEUTRAL BUOYS

Neutral buoys about 1 cm in diameter, embedded at various depths, weie used to observe the
flow field. In many laboratory experiments. three dimensional motions are obtained by taking
orthogonal observations through side windows or through a side window and the surface. In
cases with essentially 2-D topography, a 3-D picture of the motion can be constructed this
way. However, with natural fjord topography it is necessary to use photogrammetric methods
to construct a 3-D motion field from two or more oblique views through the water surface.

Photogrammetric techniques described by Nilsen and Hidem (1994) are used to calculate the
three dimensional displacements of the neutral buoys. The buoys were situated both at the
water surface and at different depths. Three video cameras monitored the area of interest in
Vestfjorden between the Moskenes Sound and Landegode. Figure 3.1 shows a sketch of the
camera set-up. The positions of the perspective centers of the three cameras are (X.,Y.,Z4) , ,
(X,,Yo,Z0) 2 and (XQ,Y0,Z )3. Observed image coordinates for a certain particle in each of the
three image coordinate systems, (x -,yi , .i).2a w, are also shown on the figure. At the sur-
fac=,(X,,Y,,Z4) 1.2 w, the rays are exposed to refraction due to the different optical properties
of air and water. The three rays all come from the buoy located inside the circle in Figure 3.1.

Seen from above, the three cameras are located in the comers of a wide triangle to achieve
minimum uncertainty in the intersection point of the rays from the perspective centers through
the image points. Details of the calibrations of the locations are given in Nilsen and Hadem
(1994).

A unique problem for the present sibladon is the radial accelerations of the modeled flow.
The position of the surface of the water in the bas-in was calculated from observations of
particles moving on the surface. The surface of the rotating model was assumed to be an
elliptic paraboloid of revolution and smooth (no capillary waves). At tho intersection of the
ray from the perspective center through the image point and the surface, a normal to the
surface was calculated. The direction of the refracted ray was then determined, iccording to
Snell's law of refraction.

-3-
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Figure 3.1 Sketch of the camera set-up

The point positions of the buoys were calculated using a method of least squares fit, such that
the sum of the squares of the distances from these points to the three corresponding rays is
minimum. The corresponding image coordinates of the buoys in each set of three images were
found automatically by using a dynamic tluresholding technique, center of gravity calculations
and an epipolar approach to limit the search area within each image.

To follow a buoy through a series of time steps, a simple approach was used. Due to the
relatively sparse coverage of buoys, small time steps and low velocity, it was possible to iden-
tify corresponding image points for the same buoy in image 1 at time t+dt, as those closest
to these at time t. When the position of a certain particle at time t+dt was found by this
method, the corresponding image coordinates in the two other images (at time t+dt), were
found by searching through epipolar polygons in these two images for the candidate giving
the minimum variance in the intersection point of the three rays and less than a certain value.

For well-defined points on the bottom of the rotating basin filled with water, the point
repetition accuracy (RMSE) was 0.6 mm using 25 time steps. (RMSE = 0.15 mm in XY and
0.5 mm in Z (height) or ca 1/3000 of mean camera-to-object distance.)

The positions of the submerged buoys were somewhat more difficult to calculate. This was
probably caused by changes in the backward light reflectance of the particles due to rotational
motions and upping, causing problems in the determination of the center of gravity.

Sometimees buoys were close enough to each o..e. to cause muzz Cium one possibility of
combining them photogrammetrically, and the image point in one image was related to two
or more image points in one or both of the other two corresponding images. An algorithm for
discriminating particles through different time steps ;s presented in Nitsen and H-&dem (1994).
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4. MODEL RESULTS

Figure 4.1 shows a graphic presentation of calculated positions of a submerged neutral buoy
observed at 24 different times each ca 1.5 s apart. The left part of the figure shows the buoy
positions seen from a perspective view in the model coordinate system. The trace to be
considered is inside the circle in this part of the figure. On the right there are three coordinate
systems. The uppermost shows the calculated vertical displacement of the buoy as a function
of time. The two other coordinate systems show the buoy displacements projected on the x-z.
and x-y planes. This motion gives the essential details for computing the local amplitude,
phase and propagation direction of interfacial waves. The direction of wave travel, however,
requires knowledge of the depth of the buoy relative to the depth of the pycnocline. For buoys
in the lower (upper) layer, the wave propagates in the direction of travel at the crest (trough).
It is therefore necessary to measure the density structure. This is done by salinity profiles.

Since the model was excited by a constant diurnal tidal forcing, buoy trajectories at quite
different times and conditions are used by relating their phases to the time of curreat reversal
to the NW in the Moskenes Sound (Maelstrom). The internal tidal map of Figure 4.2 was
constructed from the general characteristics of the amplitude. phase and wave propagation
directions of 40 neutral buoys. Z m
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Figure 4.1 An example of the calculated traces of neutral buoy motions from the
photogrammetric analysis. The XYZt coordinates of the buoy trajectory
encircled in the perspective view in model coordinates, are given on the right.
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There appear to be three amphidromes, in the field of view. This agrees wall with the general
knowledge, of these phenomena; however. within the data set there were regions of consistent
anomalies which are not yeL fully understood. Details of these antomalies, as well as the
residual flow field derived from the buoy Trajectories, are given by Nilsen (1994).
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5. DISCUSSION

The present results of phase fields and amplitudes of internal tides in Vestfjorden are derived
from a distorted, rotating laboratory model. Several comparisons with available sets of field
measurements imply that the ocean circulation in the model is a good simulation of natural
flows (McClimans and Nilsen, 1991; Fumes and Sundby, 1981).

Due to the distortion, only long-wave processes can be simulated within the framework of the
Froude similitude. This includes internal tides. To our knowledge this is the first study of
internal waves in Vestfjorden and it is therefore of interest to establish cause/effect relation.
ships which may be tested/verified in future field measurement programs (or detailed analysis
of existing, relevant data sets). Some very recent data, from a current meter array inside the
sill, show interfacial waves propagating into the fjord (McClimans and Johannessen, 1994).
The result (Rocky Road) is noted on the map in Fig 4.2.

Neutral buoys suspended in the moving density field were used to obtain three dimensional
particle trajectories in the internal wave fields. High accuracy photogrammetrical methods
gave sufficient information on interfacial waves using a sparce set of buoys. The buoy
trajectories reveal first mode internal waves propagating from the Maelstrom and the sill. This
general pattern does not seem to depend on the inflow conditions or the depth of the interface.
There are, however, too few data available to give a statistically significant account of the
effects of variable inflows.

The observed amphidromes indicate that the tidal jets through the Lofoten arc'dipelago do
indeed act as sources for internal tidal waves. This is more complicated than the situation
modeled by Matsuyama and Ohwaki (1990). The largest amplitudes (> 15 m) appear along
a ridge between the outer sill and the Maelstrom, and occur when the tidal currents change
to the SE through the Lofoten archipelago.

At the present stage of development of our techniques it is time-consuming to construct an
internal wave field. More automation is needed at the various stages of the analysis. A parti-
cularly critical phase is the selection/rejection of particles due to lost frames and interference
in the sequences. A larger number of buoys increases the interference problem. More thought
must be given to the systematic synthesis of these facts for automatic analyses.

The present analysis of the laboratory results raises many questions on the spatial distributions
of internal wave phases and amplitudes forced by tides and steered by topography and the
rotation of the earth. The result that the largest internal wave amplitudes are observed
between the two main sources is reasonable; however, the phases and patterns of the
amphidromes are expected to be quite different in nature, where the semi-diurnal tides
dominate. More complete analyses of existing data and dedicated field measurement programs
are needed to answer many of these questions. Alternatively, numerical models (e.g. Sveen
and Martinsen, 1994) validated to these data, could provide many of the missing details and
simulate local changes incurred by varying the inflows of Adantic and coastal waters.
Computer models can also provide more realistic tidal forcing than the constant diurnal
forcing used in the laboratory model.
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ABSTRACT

A combined bridge and tunnel between Copenhagen (Denmark) and Maim6 (Sweden) across the
Sound (Oresund) has been planned according to an agreement between the Danish and Swedish Gov-
emmeits. The Sound is the second largust of the three straits connecting the Baltic Sea with the
North Sea. The flow in the Sound is barotropically dominated, the meteorological forcing being the
dominating mechanism governing the flow. The oscillating flow over the sill creates a highly
stratified flow north of the sill with dense water plunging down the southern side of the sill during
southward flow. Environmental concerns regarding the possible impact on the flow conditions from
construction of the Link have constituted the basis for thorough hydiodynamic investigations compris-
ing long term monitoring and detailed 3D modelling. The monitoring includes measurements of water
levels, wind and air pressure, stratification and currents (measured from fixed stations as well as
from vessels using shallow water Broad-Band Doppler techniques). The modelling includes 3D
numerical modelling using the model SYSTEM 3 developed at the Danish Hydraulic Institute (DHI).
Comparisons between measured and modelled flow are presented. In particular, the horizontal
velocity distribution over complex topography (including headlands and islands) is investigated by
means of direct comparison of ADCP (Acoustic Doppler Cut-ent Profiler) data with modelled results.
In addition, the vertical velocity distribution is investigated using measurements from fixed stations.
Finally, an account of the possible impact of the Link on the exchange flow is given.

I INTRODUCTION - THE SOUND LINK

Denmark and Sweden are separated by the Sound, one of the three water ways that accounts for the
e.ch e•- f water betwee.- t•he Baltic S- "--" the North Sea. In 19-0 the GCove"..... of the two
countries agreed on the construction of a fixed Link across the Sound. The Link consists of a sub-
merged tunnel from the Danish island Amager under the Drogden channel leading to two artificial
islands south of Saltholm connected by a low bridge, from the islands a bridge and a high bridge
span the Flinten Channel to Sweden, Fig. 1. The Link has been designed in order to minimize the
blocking of the flow through the Sound.

Danish Hydraulic Institute, Agera AI6 5. DK-2970 Hersholin, Denmark
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Figure I Th planned fixed Lwnk across the Sound connecting Denmark and Swde~n. I'liustration of
relevantt stations for monitoring currents and sainjay (msonitoring programme 1).

The exchange of water between the Baltic Sea and the North Sea takes place through the Great Belt
(Store BxIt) which is responsible for approximately 65 % of the exch.ange, the Sound - 25 % and the
Little Belt (Lillo. Belt) - 10% (Jacobsen, 1980). Changes in the flow conditions in the Sound, due
to the Link, will influence the hydrography of the Baltic. Sea. ibe aquatic environment of the Baltic
Sea is a sensitive brackish ecosystem which is strongly dependent on the supply of oxygen rich,
saine water from the North Sea through the Danish straits. Environmental concerns regarding the
possible impact that the contruction of the Link may have on ft.e flow conditions have constituted the
basis for thorough hydiodynamnic investigations comprising long term hydrographic monitoring and
detailed 3D modelling.

2 GENERAIL HYDRODYNAMICS OF THE SOUND

The fresh water surplus of the Baltic Sea forces a mean current from the Baltic of 1.4 -104 nO/s.
The shifting weather conditions, dominated by low pressures travelling from the North Atlantic
towards the cast with time scales of 5 to 10 days, force the water to oscillate in and out of the Baltic
Sea through the straits at irregular intervals.

The flow in the Sound is barotropically dominated. Hlence, the nieterological forcing, and the wind
and water level differences between the Kattegat and the Baltic Sea are the dominating feat-arcs
governing the flow. The density difference between the north (typical salinity: 26 psu) and south
(typical salinity: 8 psu) of the Sound is also of some importance for the flow. The flow is bottom
friction dominated and the specific resistance depends on water level and stratification.

The flow of brackish water from the Baltic Sea and more saline water from the North Sea forms a
stratified two or three layer system in the straits, Fig. 2. The Sound has a men= depth of 15-20 m
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with a very shallow sill, at a depth of 7-8 m, across the Sound south of Saltholm, near the alignment
of the Link. This Drogden sill separates the salt water in the Sound from the Baltic Sea and controls
the southward flow through the Sound. The Drogden sill accounts for between 30 and 70% of the
total flow resistance in the Sound, depending on water levels and stratification in the sill area.

During northward flow, Baltic water with a salinity of approximately 8 psu flows into the Soxnd
thereby pushing Kattegat surface water, with a salinity of 20 psu, to the north. The mixing between
the two layers is strong and increases the salinity of the upper layer to 12-15 psu. If the flow lasts
for more than 3 days, a quasi-steady outflow situation is formed where the Helsiagor-Helsingborg is
the governing cross-section.

During southward flow, the surface layer with a salinity of 12-15 psu is forced to the south through
the Sound across the sill. After some time, the interface to water with a salinity of 20 psu (Kattegat
surface water) has risen to the level of the sill and starts flowing into the Baltic Sea. South of the sill
the salt water plunges under the brackish Baltic water and forms a dense bottom current. At the sill
the water is often totally mixed due to bottom generated turbulence. If the flow continues southward,
water with a salinity up to 25 psu flows into the Baltic Sea.

lot 10W
5.

151 '30- V%'/ rogdam' 4  Baltk 1Sutic

Depth Depth

flufnld ; MIom xreiit Gr*aund 4, Momi Cyrent

A. CURENT TOWARDS NORTH 9. CURRENT TOWARDS SOUTIH

Figure 2 Section through the Sound describing the principles of (A) northward flow, (B) southward flow.

3 MONITORING

The first monitoring programme in connection with the Sound Link project was established in
February 1992. Since then, the programme has been changed and extended to meet new require-
merits. The existing monitoring programme is customised to provide detailed information on the
hydrodynamics of the strait and to provide data for set-up, and in depth calibration and validation of
the 3D numerical model.

Wind and air pressure, water levels, currents and salinity are measured continuously at a number of
fixed stations in the Sound, Fig. 3. Salinity and currents are measured at several depths at each
station. The data are transmitted online to DHI. With regular time intervals, current and salinity
profiles are measured from a survey vessel sailing along lines in areas of special interest. The current
profiles are measured by shallow water Broad-Band Doppler techniques using an ADCP (Acoustic
Doppler Current Profiler). In August and October 1993 and in January 1994, further intensive
measuring campaigns were carried out. The vessel based measurements were intensified and supple-
mented with float tracking and an extended programme for current measurements at fixed stations
close to the alignment of the Link.
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The stratified flow through the Sound nmay be divided into three sections, ref. DHIULIC/SMHI
(1993):

North of the sill the water colunm is almost always stratified. When the current is northward the
interface is pushed down and to the north, during southward current the interface is raised. The
position of the interface varies 2-4 m between north- and southwa'd flow, Fig. 4. Th~e Coriolis force
affects the flow through the Sound and tilts the interface in the east-westerly direction.

In the sill area the flow resistance is lar'ge during mixed conditions but reduced during situations
where the water colurmn is stratified. Measurements have shown that the flow across the sill is
stratified during weak southward flow and when thte flow direction is changing. The water column
is stratified (salinity difference between surface arid bottom > 1 psu) for 10% of the time when the
flow is northward and 30% of the time with southward flow.
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Figure 4 Calculated interface level at Station 11. Current measured at Stations 4 and 9. For station
numbers see Fig. 1.

During northward flow the sill area is stratified until outflowing Baltic Sea water has flushed the sill,
the flushing lasts approximately half a day. When the near bed velocity is small and the vertical
density difference large, the stratification is stable and exists across the sill. When the velocity in the
bottom layer increases, the interface breaks down due to bottom generated turbulence. Fig. 5
illustrates examples of measured flow conditions across thv sill. An analytical calculation regarding
the mixing between the two layers based on equations for entrainment into the lower and upper layers
has been carried out. Below is shown the equation for the downwards entrainment.

The calculation of the mixing effect (entrainment) is based on the bulk flux Richardson's number
theory, ref. Bo Pedersen (1986):

r POT (1)
1 PROD

where RJ (-4.5%) is a constant for sub-critical flows, called the bulk flux Richardson number,
PROD is the integrated production of turbulent kinetic energy in a layer, and POT is the integrated
increase in potential energy in a layer or the work performed by the turbulence, which can be written
as follows:

S= lao½pshj (2)
POT i5= 1"W ZJ (

Si.s.the entryinment into the bottom laycr, hQ is thc thickness, g is the gravity, 8 is the
dimensionless reduced density and p. is a reference density.

The production of turbulent kinetic energy in the lower layer (PRODO) is determined by the following
expression, ref. Bo Pedersen (1986):
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Based upon the Richardson bulk flux number theory, the downwards entrainment is thwa ý-stiaiated
to be:

v(. j ho+hl '4,0

In the following sectiort, this expression is applied to oberved conditions.

On 16 June 1992, the salinity near the suiface at Sta-

_______~ ,.1 dnCS was 15.3 psu, at Station CT32 14.3 psu,
S .. ad at Station c'rs 1 16.3 psu. Surface water of in-

creasing salinity -lows towards thz sill, which was
S-- / I . why water of higher salinity was measured closer wo

,, 06/,,'V , , 04/' | tie furface at Station CTS3 than at Station CTS2. The
Y J higher salinity near the surface at Station CTS1 than

at Siation CTS2 was due to mixing. The wind veloc-
____________- - ity (W) on 16 limne 1992 was approximately 6 ni/s. At

Station CTS2 Lhc. upper layer thickness (h2) was 5.5
in, the lower layer thicknesr (4k) was 3.5 m, the
lower layer velocity (V0) was 0.5 ni/s and the salinity

"AV andifference between the, layers 3 psu. Based upon
"I�- map thest data the upwards entraimuent at Station CTS2 is

- calculated to be 39 • 1IU m/s, and the downwards

"4 "My entrahiment to be t34 - 1 rn m/s. The distance
---- ,i- between Statiun CTS2 and Station CTSI is 50M0 m

,______ _ giving a travelling time ot approxiinstely 2.8 hous.
A, ,In 2.8 houxs, a downwards entraniment velocity of 95

10 ,ins increases the lower layer thiclaess by
approximately 10 mi. This calculation indicates that
"the upper layer is mixing into the lower layer before
Station CTS1, which is supported by the measure-
ments.

+ I•"' On 17 June 1992, the ýalinity stratification was
StM observed across the sili. The wind velocity v(W) was

approximately 4 n/s. At Station CTS1 the upper layer
, dicjluiess (h,) was 5 0 in, the lower layer thicknesn

•- .jr (it) was 3 0 m, the lower layer velocity (V0) was 0.1// ~ >. F n/s, aid the salinity difference between the layers 2.5

.,.i, .•.= psu. Ihe entrainment upwards at Station CT5i is'*},• 'J,• • calculated to be 0.8 - 10-s m/s, and the entrainmnent
AU oe ,downwards 1.5 •-10 ri/s. A change of the interface

Xtuosition of 1 rn would take approximately 40 outrs.
ell, According to this caltulation, a stratified structure at

PQW. ,M the sill is aut mixing into one homogenous layer,

Figure 5 Profiltv of salinity cd cwhich is supported by the observations.

rnea.vured along a N-S line in
the Drogden chainel.
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In situations where the current speed in the upper layer becomes very large the interface rises and the
bottom layer is lifted over the sill due to low pressure generated by the rapidly flowing upper layer,
the Bernoulli effect, Fig. 5.

South of the sill the inflowing salt water plunges under the light brackish Baltic water. The plunging
line moves back and forth depending on density differences, and the flow velocity and time scale.
When the flow direction changes to northward, the saline water, which passed the sill during south-
ward flow, continues to flow to the south into the deeper parts of the Baltic Sea.

5 3D NUMERICAL MODELLING

The water and salt exchange through the Sound is modelled using the 3D model, SYSTEM 3
developed at the Danish Hydraulic Institute (DHI), ref. DHl (1990). The 3D model is fully three-
dimensional and non-hydrostatic solving the momentum equation and continuity equations in the three
cartesian directions. SYSTEM 3 simulates unsteady flow, taking into account density variations,
bathymetry and external forcing such as meteorology, tidal elevations, currents and other
hydrographical conditions. The model is composed of a hydrodynamic module, a turbulence module
and an advection dispersion module. The flow is decomposed into mean quantities and turbulent
fluctuations. The closure problem is solved through the Boussinesq eddy viscosity concept relating
the Reynold stresses to the mean velocity field. To handle density variations, the equations for
conservation of salinity and temperature are included. An equation of state constitutes the relation
between the density and the variations in salinity and temperature.

The 3D model is used to simulate the water flow and salt flux through the Sound throughout a design
period in the reference situation before the construction of the Link and after the construction by
parameterisation of the Link elements. The Sound Link is calculated to block 0.5% of the exchange
of water and salt to the Baltic Sea if no compensation dredging is performed. The salt water trans-
ported through the Sound into the Baltic Sea enters different levels of the Baltic Sea depending on the
salinity. Tho. bottom waters in the deep parts of the Baltic Sea are only occasionally exchanged with
more oxygen rich water, when high saline water enters the Baltic Sea. It is, therefore, important for
the environmenl, especially in the deeper parts of the Baltic Sea, that the transport of water with
different sal-nities is unchanged after the construction of the fixed Link. In order to achieve this
compensation, dredging is performed so that the combined effect of the dredging and the Link is nil
regarding the discharge to and from the Baltic Sea.

6 COMPARISON BETWEEN OBSERVED AND MODELLED FLOW

The 3D model is calibrated against measured water levels and currents for the period 1-17 August
1993. The monitoring program for measuring salinity was not fully launched during this period and
the calibration is, therefore, only preliminary. The calibration of the model against observations of
water levels, salinity and currents for the period 18-31 October 1993 is ongoing.

Fig. 6 illustrates comparisons between modelled and observed (using vessel based ADCP) horizontal
current profiles. Figs. 7 and 8 illustrates time series of modelled and observed current and salinity
at the fixed stations near the alignment of the Link. Generally, there is satisfactory agreement
between modelled and observed currents except in the middle of the Drogden channel during
southward flow. This inconsistency is due to baroclinic effects. Just north of the sill the water
column is mostly stratified during southward flow. If the stratification in this area is modelled
inadequately, the flow resistance is exaggerated and thus the current speed underestimated.
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ADCP

Figure 6 Modelled and observed horizontal current profiles on 15 August 1993 (measured using a vessel
based ADCP).
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Figure 7 Time series of modelled and observed current at Station 4 (Fig. 1).
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Figure 8 Time series of modelled and observed salinity at Station 4 (Fig. I).
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The variability of vertical finescale temperature structures
in Lake Geneva, Switzerland

S. M. 7hang, U. Lemmin E. H. Hoefiinger
LRH-EPFL L.E.GJIGM
CH-1015, Lausanne 38041, Grenoble Cedex
Switzerland France

Abstract
Based on a series of monthly temperature profiles taken in Lake Geneva since 1986,

an analysis of stratification dynamics distinguishes two ranges in z-t space: a strongly
stratified upper layer (seasonal variable) and a weakly or non stratified lower layer without
time variation (Fig.1). Temperature spectra show the same pattern: strong seasonal variability
in the energy level in the upper layer and no variability in the lower layer (Fig.3 and Fig.4).
The Thorpe scale mnd the inversion percentage for each profile reveal slightly larger values in
the lower layer (80-260m depth) and during the destratified period (Fig.5). A lognormal
distribution of the Thorpe scale is comparable to the one found by Thorpe in Loch Ness
(Fig.6). The vertical mixing coefficients calculated with the Thorpe scale and the buoyancy
frequency are smaller than those calculated by the budget method for the upper layer during
the heating season (Fig.7), and give. values equivalent to those obtained in other lakes and in
the interior of oceans in the lower layer (Fig.8). All three analyses show that in Lake Geneva
there is a 200m thick intermediate layer that has the characteristics of the ocean interior.

1. Introduction
A series of water temperature profiles has been taken regularly (about once a month)

at stations along the axis of Lake Geneva since 1986 with a temperature resolution of 0.001'C
and a depth resolution of 20cm. They show frequent small steps and temperature inversions.
Based on these high precision profiles, three aspects, i.e., the dynamical state, a length scale
estimation and energy levels, are calculated and discussed. The dynamic analysis allows us to
understand the status of stratification and the effects of the buoyancy force in Lake Geneva.
The scale analysis will be useful to gauge inversion structures and to describe the instability
of the water column. The energy analysis will reveal the origin of eaergy of turbulent stirring
and present the turbulent energy distribution in space and time. The aim of this study is to
understand and quantify vertical mixing processes.

In the present calculation, the influence of the near surface activities and the diurnal
thermocline (0-20m) is excluded. In the case where the temperature has its maximum value
at a depth below 20rh, the region to be analyzed will begin at the depth (z..) where the
maximum temperature occurs. Because turbidity and conductivity in the bottom boundary
layer have strong gradients, the calculations are limited to the zone above 260m for stations
S1, S2 and S3 which are situated on the central plateau of lake and have a depth of about
300m. We will only consider temperature fluctuations if the temperature in the observed
profile differs from that in the stable profile by more than the noise level (0.001TC), i.e.,
T">0.0020 C.

2. Analysis of stratification dynamics
Vertical mixing is often modified by the existence of a thermocline with a strong

density stratification in lakes and reservoirs. The stratification expresses a vertical fnrce that
may change the structure of eddies, restrict the vertical motion, and is traditionally quantified
by the. buoyancy frequency, N, defined as N' = -gp-'dp/l&. The dist ibution of N in both
space and time is shown in Fig. 1. There exist two different zones: a strongly stratified zone
(A) and a weakly or non stratified zone (B). In zone A, which is situated in the upper layer
and during the heating season, the values of N are generally much larger than that in zone B.
Very large values (N>100 cph) are typically found at a depth above 40m. In zone B, the
buoyancy decreases to a range of 0 to 10 cph. The depth where N reaches its maximum



decreases slightly with time after law summer. Penetrative convection is more activ: during
this period, and it causes thermocline deepening. In the upper layer, the buoyancy frequency,
N, arrives at a maximum value in autumn near the surface and has its lowest values in spring,
comparable to levels in zone B. Inversely, the buoyancy frequency in the lower layer almost
remains nearly constant during the whole year. As a consequence of the existence of this
variation in stratification, the concepts or methods which have been developed for zone A
cannot directly be applied to zone B. The turbulence in the stratified zone A is anisotropic,
but it may be regarded as locally isotropic. Turbulence in non-stratified zone B seems to
approach isotropy because the vertical density gradient is small.

3. Spectral anulysis
Temperature fluctualdons in time or in space can be caused by different processes:

straining of a mean temperature profile by internal waves, overturning and mixing by
turbulent eddies, as well as differential advection by density or turbidity intrusions in the
horizontal to name a few. Each of these processes has different dynamics and is expected to
show a different spectral form. In order to study these different mixing processes which cover
a wide range of different time and length scales in the lake, calculations of spectra of
temperature are carried out. To obtain the general spectral form, all temperature spectra of
station SI from 1986 to 1990 (60 profiles) are calculated. We found that the vertical energy
spectra of temperature in Lake Geneva are characterized by two distinct bands. For smaller
wave numbers, the spectra have a K"'.7 dependence, which is somewhat smaller than -2
obtained by Roden (1971), Hayes et al. (1975) and Gregg (1977). This corresponds to the
internal wave band. For larger wave numbers the spectra have a 1"" dependence, which is
consistent with the previous results of -2.5 -- 3.0 (Roden; Hayes et al.; Gregg; Joyce et al.,
1978). This corresponds to the fine scale band. The break is situated near 0.1 cpm. The energy
level of the vertical 7' spectrum arrives at a maximum value in late autumn and falls to a
minimum value in early spring (Fig.2). Energy levels vary with season, but the physical
mechanisms, such as internal wave and turbulent eddies, keep the same combination, as
indicated by an unchanged spectral slope, specially for the fine scale range. Since the absolute

fluctuation value is related to the spectral function as r" - E,, the mean 7' in autumn
(typically September) is much greater than in spring (typically February).

In order to address and compare the different mixing processes between the
epilimnion and the hypolimnion, the water column is cut into two parts as shown in Fig. 1,
i.e., an upper layer, the depth of which varies from 20 to 80 meters (epilimnion and
thermocline), and a lower layer from 80 meters to the bottom about 260 meters (hypolimnion)
for stations S1, 52 and S3. All spectra of temperature data from 1986 to 1991 are calculated
and summarized for the epilimnion and the hypolimnion in Fig.3 and in Fig.4 respectively.
The epilimnetic spectra (Fig.3) consist again of two bands and a break range. In the first band
(wave numbers from 0.005 to 0.08 cpm), the ratio of upper-contour to lower-contour, i.e., the
ratio of maximum and minimal energy level, is about 104, meaning T, / Tf'i. - 102. In the
second band (wave number larger than 0.1 ,pm), the ratio Erm,/ ErI is about i03 , i.e.,
T,, / T, - 33.

The first band of hypolimnion spectrum (Fig.4) is very short and narrow (the wave
numbers from 0.02 to 0.08 cpm), in which the ratio Er- , /•~ 10"', thus. Tý, / T, - 4.5.
In the second band B r. is only 10'', i.e., T /rZ -1.5. Therefore, the two terms,
"steak" and "bone", are used to visualize the spectral patterns of the epilimnion and the
hypolimnion respectively. In other words, the ratio of temperature variance has a large
seasonal range in the epilimnion and in the thermocline. However, it has a very small
seasonal range in the hypolimnion. Comparing the energy levels shown Fig.3 and Fig.4, the
temperature fluctuation variation range in the epilimnion is much bigger than in the
hypolimnion (mean value 10 times). That implies that in Lake Geneva, which is large and
deep, internal waves affect mainly the upper layer and the influence on the lower layer may



be negligible in terms of energy level. In summary, epilimnetic teMperature variations in the
fine icale range depend strongly on atmospheric fmcing and ave greatly influenced by
seasonal temperatuir changes. H.yolhnnetic tempemture variations in ahe fine scale range
depend less strongly on amospheric changes and are caused by internal waves which are
slightly influeced by aiospheric changes.

-. Scal a Sayals
The estimation of the length scales of tde observed vertical overturning structures,

being potentially untable, may help in understanding and quantifying vertical mixing inparticular in the, lower hypolimantion where the traltionial heat budget medthod dm-; not give.any results (Michalski and r'mmin, 1992).

",zrbue••no mixing theories often depend on assumptions about the length scale of
turmtuent eddies, and early Prandil mixing length theories explicitly used the size of turbulent
eddies as a fuudamental vaziable. Mleasurtacsts of the lengih scales can provide evidence fir
the theory. Thorpe (1977) proposed an objective method of estimating a length scale (the
'Thorpe scale', L7 ) assoiated widh overtu-aing events in a str•aified fluid. The method of
calculating L,. consists of ordering an observed powntial density profile, which contains
inversions, into a stable mnonotonic profile. When the flow is homopencous in the hotizontal
and the density (tempeuature) inversions are the result of turbulent sirring, tw 'Thorpe, scale is
strongly conrrlated with the Ctmaidov scale 4 (DilMon, 1982; Ivey and banberger, 1989).

The Thorpe displacement is a measure for the vertical displizments caused by the
turbulent motions bore significant moloculux diffusion has occurred (Tharpe, 1977). It is
also useful as a vWsud aid in defining the vertical extend of some mixing events. For the
calculation of tdi T"horpe scale, the temperature profiles may be treated as- density profiles
becaus they arc monotonic wilth depth provided T>40 C. A temperature inversion structure
indicat"es that the corresponding; density profile is gravitationally wwtutkle.

In this sud7 , tie inversion percenlage is del'iul as a ratio of the region occupied by
temperature inversions to the whole range under cosderation. It will be used to measure the
percentage, of the water column which is potentially unstable and contributes to mixing, and it
indicaw-s the development of turbulca-.n space.

If the averaging range. covers the entire profile depth (between 20u or z..• and
260m), the resultawt Thorp•e scale, named profile Thorpe scale, will be a measure of the
typical inversion scale of the whole profile. ýased on the data of station S1, S2 and S3 from
1988 to 1993, the profile Thorpe ,cales in different months can be determined by rte
following e'quaion:
'-nwnti)1 a r -Ln7h,,,ear,nt7ion)

r N s (ye -year 0) 'I;F, Y, ,,,, h, 9

Yn the piesefu auip. (Eq.1)
mmnh- % 12 (Jan. to Dec.); Ns- 3 (Station SL S2, S3): year, = 1988, year, -=1992.

Ea.h kT is an average over many profi'es which are assumed to be statistically
,similar, and cover the same vettical riage.

Profile Thorpe scales as function of month art shown in Fig.5. It follows that the
profile Thorpe scale has an order of .-a with an avzrage inversion percentage of 15%. The
Thorpe scele during the cooling wason is slightly iavger d•ma that during the heating season.

The probability of a cer-ain rThorpe scale for a vertical region under consideration is
Liven by

Ad~r 12 4 4 (r 1 ~/N,, (Eq.2)
whera Nr., is the total aumbe--r of Theorme siales obseaved and , is the number of
Thorpe scales wvhich fall int a range specified batwoexi L,., wid Lr.+Ad. For each individual
profile which contains uiversions, r'3q.2 can be used to obtain the empirical probability
distribution &ze on te data from about 150 profiles, Fig.6a presents the cumulative curves
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for stations SI, S2 and S3, giving probability distributions from 1988 to 1993. While there is
some scatter as expected, the highest probability always occurs at the scale less than 1 meotr,
and the probability function is nearly flat at larger scales. There is little difference between
the curves of the three stations for the small scale range. The regression curves of the
empirical probability can be well approximated by a lognormal distribution (Fig.6b). The
points in the figures which are the results of Thorpe (197T agree well with the overall trend
of Lake Geneva data. The probability in Lake Geneva is lower for the very small scales and
slightly higher for the intezrmediate scales. 'This documents the effect of the microscales which
have not been measured here.

For isotropic tuibulence, we may assume that u' - v' - w' and u V - V IV - 0.1 in Lake
Geneva. According to the currents listed in Table 1, w% will be an order of lcm/s in the upper
layer and 0.1cm/s in the lower layer, where the dynamics are controlled by very weak
motions.

Table 1 Tvpiwal fluctuation of temperature in different layers
(data from Couchy 5182 cam ign)

T 7M18m 75m "175m
M- -nC 2.0 0.4 !.

u (cr s) "6.0 TT3. T:O
N •O cps .. 0.0222 06.0042 W M0.0028Recently rthy (1993): ind that nuadson numbers near the bottom

of Lake Ontario are mainly below the critical value of 0.25, indicating that the current shear
in this layer is strong enough to overcome stability and generate turbulence. In Lake Geneva,
instability may frequently occur and the overturning process produces patches of turbulence
and mixing in most of the range of the lower layer. In the epilimnion and thermocline region,
the turbulence was mainly damped (Richardson number much larger than 1 by using the
values in Table 1). That signifies stable conditions for the upper layer. However, some
generation of turbulence is probably still taking place in the thermocline region, as indicated
by a small inversion percentage in this layer.

5. Vertical mixing
Thorpe (1987) first proposeC that a mixing coefficient can be determined by treating

individual vertical profiles. Considering an unstable range occupied by an inversion structure
(or eddy) of size LT, where the buoyancy fiequency is N, the eddy mixing coefficient will be

Kz = ) j,-2, (Eq.3)
where e -,V L 3 and the constant y is proposed by Ivey and imberger (1989) as

y = R1/(1- Rf). (Eq.4)
R, is the flux Richardson number, indicating the mixing efficiency. It depends on the
magnitude of the ratio L,/Lr, and is proposed to be 0.20 in the case of L./LT =1, resulting in
y=0.25. This is close to the mean estimate ( yz:0.24) obtained by Oakey (1985) and Gregg et
al. (1986). Dillon (1982) found the ratio Lo/.L. =0.8 for oceans and lakes. Although doubt still
exists about the appropriate value, we shall take those two constants (R,=0.20 and
/. LT=0.8) for Lake Geneva as Thorpe (1987) did.

The mixing coefficients are calculated for different seasons and different depths, as
shown in Fig.7 and Fig.8 for the heating season and the cooling season respectively. Fig.7
indicates that the mixing coefficient, as expected, increases with depth until a depth of about
100m, then keeps fluctuating down to the bottom. Inversely, K, during the cooling season
exhibits large scale fluctuations over the entire profile (Fig.8).

Using the heat flux gradient method (budget method), we estimated vertical mixing
coefficients for Lake Geneva. Fig.8 shows that the coefficients calculated by the budget
method are larger than those by Eq.3 in the upper layer during the heating season. This is
most likely because the mean temporal and spatial temperature gradients used by the heat flux
gradient method integrate over a large number of processes on different time and length
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scales. In contrast, the coefficients, quantified by Eq.3 and shown in Fig.7 and Fig.8, are only
the contribution to mixing due to the instantaneous inversion structures. For the lower layer,
the vertical mixing coefficients give values comparable to those obtained by the heat flux
gradient method falling into the range of 0.3 to 5cm'2 Is. The order of K, shown in Fig.7 and
Fig.8 corresponds to the results in the literature for the hypolimnion of other lakes (Hutter,
1983; Wuest, 1987), and observations in the interior of the ocean: about 0.3 ea2 Is (Ivey,
1987). If the coefficient is an indicator of the intensity of turbulent motions, we may conclude
that the intensity of turbulence and the potential of mixing in the hypolimnion of Lake
Geneva are comparable with that in other lakes and in the interior of oceans.

6. Condusions
Temperature inversions indicative of vertical overturning structures were observed in

all profiles at all depths. Dynamic analysis distinguishes two ranges in z-t space: zone A, i.e.,
a strongly stratified zone (upper 80m), and zone B, i.e., a weakly or non stratified zone (80m
to 260m). While zone A shows strong seasonal variation, zone B remains constant.

Energy density spectra of the finescale temperature gradients show that in the range
between 20m Oust below the seasonal thermocline) and 80 rn depth where mean temperature
gradients display a strong seasonal variation, the energy level changes with season, being
highest in August when stratification is strongest and lowest in February when the lake is near
homothermal. The spectral slope remains constant at around 2.5. From 80m to 260in depth
where seasonal variations are not evident, spectral energy is found to remain at the level of
that of February in the above layer during all seasons.

Thorpe scales calculated from the temperature profiles show slightly larger values in
the lower layer (80-260m depth) and during the destratified period. A lognormal distribution
of the Thorpe scale can be established for all profiles, which is comparable to the one found
by Thorpe in Loch Ness. The vertical mixing coefficients calculated by the Thorpe scale and
the buoyancy frequency in this study are smaller than those calculated by the budget method
for the upper layer during the heating season, and give values comparable to those obtained in
other lakes and in interior of ocean in the lower layer. Imberger and Patterson (1989) had
shown that in "typical" lakes the bottom boundary layer starts immediately below the
stratified layer. All three analyses show that in Lake Geneva there is a 200m thick
intermediate layer that has the characterisics of the ocean interior.
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The variability of vertical finescale temperature structures
in Lake Geneva, Switzerland

S. M. Zhang, U. Lemmin E. H. Hopfmger
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Abstract

Based on a series of monthly temperature profiles taken in Lake Geneva since 1986,

an analysis of stratification dynamics distinguishes two ranges in z-t space: a strongly

stratified upper layer (seasonal variable) and a weakly or non stratified lower layer without

time variation (Fig. 1). Temperature spectra show the same pattern: strong seasonal variability

in the energy level in the upper layer and no variability in the lower layer (Fig.3 and Fig.4).

The Thorpe scale and the inversion percentage for each profile reveal slightly larger values in

the lower layer (80-260m depth) and during the destratified period (Fig.5). A lognormal

distribution of the Thorpe scale is comparable to the one found by Thorpe in Loch Ness

(Fig.6). The vertical mixing coefficients calculated with the Thorpe scale and the buoyancy

frequency are smaller than those calculated by the budget method for the upper layer durhig

the heating season (Fig.7), and give values equivalent to those obtained in other lakes and in

the interior of oceans in the lower layer (Fig.8). All three analyses show that in Lake Geneva

there is a 200m thick intermediate layer that has the characteristics of the ocean interior.

1. Introduction

A series of water temperature profiles has been taken regularly (about once a month)

at stations along the axis of Lake Geneva since 1986 with a temperature resolution of 0.001°C

and a depth resolution of 20cm. They show frequent small steps and temperature inversions.

Based on these high precision profiles, three aapects, i.e., the dynamical state, a length sctale

estimation and energy levels, are calculated and discussed. The dynamic analysis allows :as to

understand the status of stratification and the effects of the buoyancy force in Lake Geneva.
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The scale analysis will be useful to gauge inversion structures and to describe the instability

of the water column. The energy analysis will reveal the origin of energy of turbulent stirring

and present the turbulent energy distribution in space and time. The aim of this study is to

understand and quantify vertical mixing processes.

In the present calculation, the influence of the near surface activities and the diurnal

thermocline (0-20m) is excluded. In the case where the temperature has its maximum value

at a depth below 20m, the region to be analyzed will begin at the depth (zT.) where the

maximum temperature occurs. Because turbidity and conductivity in the bottom boundary

layer have strong gradients, the calculations are limited to the zone above 260m for stations

S1, S2 and S3 which are situated on the central plateau of lake and have a depth of about

300m. We will only consider temperature fluctuations if the temperature in the observed

profile differs from that in the stable profile by more than the noise level (0.001°C), i.e.,

T; ,0.002 0C.

2. Analysis of stratification dynamics

Vertical mixing is often modified by the existence of a thermocline with a strong

density stratification in lakes and reservoirs. The stratification expresses a vertical force that

may change the structure of eddies, restrict the vertical motion, and is traditionally quantified

by the buoyancy frequency, N, defined as N = - gp-'dcp/z. The distribution of N in both

space and time is shown in Fig. 1. There exist two different zones: a strongly stratified zone

(A) and a weakly or non stratified zone (B). In zone A, which is situated in the upper layer

and during the heating season, the values of N are. generally much larger than that in zone B.

Very large values (N>100 cph) are typically found at a depth above 40m. In zone B, the

buoyancy decreases to a range of 0 to 10 cph. The depth where N reaches its maximum

decreases slightly with time after late summer. Penetrative convection is more active during

this period, and it causes thennocline deepening. In the upper layer, the buoyancy frequency,

N, arrives at a maximum value in autumn near the surface and has its lowest values in spring,

comparable to levels in zone B. Inversely, the buoyancy frequency in the lower layer almost

I



remains nearly constant during the whole year. As a consequence of the existence of this

variation in stratification, the concepts or methods which have been developed for zone A

cannot directly be applied to zone B. The turbulence in the stratified zone A is anisotropic,

but it may be regarded as locally isotropic. Turbulence in non-stratified zone B seems to

approach isotropy because the vertical density gradient is small.

3. Spectral analysis

Temperature fluctuations in time or in space can be caused by different processes.

straining of a mean temperature profile by internal waves, overturning and mixing by

turbulent eddies, as well as differential advection by density or turbidity intrusions in the

horizontal to name a few. Each of these processes has different dynamics and is expected to

show a different spectral form. In order to study these different mixing processes which cover

a wide range of different time and length scales in the lake, calculations of spectra of

temperature are carnied out. To obtain the general spectral fonn, all temperature spectra of

station SI from 1986 to 1990 (60 profiles) are calculated. We found that the vertical energy

spectra of temperature in Lake Geneva are characterized by two distinct bands. For smaller

wave numbers the spectra have a C-17•' dependence, which is somewhat smaller than -2

obtained by Roden (1971), Hayes et al. (1975) and Gregg (197-). This corresponds to the

internal wave band. For larger wave numl;ers the spectra have a K- 65 dependence, which is

consistent with the previous results of -2.5 -- 3.0 (Roden; Hayes et al.; Gregg; Joyce et al.,

1978). This corresponds to the fine scale band. The break is situated near 0.1 cpm. The energy

level of the vertical 7T spectrum arrives at a maximum value in late autumn and falls to a

minimum value in early spring (Fig.2). Energy levels vary with season, but the physical

mechanisms, such as internal wave and turbulent eddies, keep the same combination, as

indicated by an unchanged spectral slope, specially for the fine scale range. Since the absolute

fluctuation value is related to the spectral function as '2~ - EB, the mean T in autumn

(typically September) is much greater than in spring (typically February).
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In order to address and compare the different mixing processes between the

epilimnion and the hypolimnion, the water column is cut into two parts as shown in Fig. 1,

i.e., an upper layer, the depth of which varies from 20 to 80 meters (epilimnion and

thernmocline), and a lower layer from 80 meters to the bottom about 260 meters (hypolimnion)

for stations S1, S2 and S3. All spectra of temperature data from 1986 to 1991 are calculated

and summarized for the epilimnion and the hypolimnion in Fig.3 and in Fig.4 respectively.

The epilinnetic spectra (Fig.3) consist again of two bands and a break r-ange. In the first band

(wave numbers from 0.005 to 0.08 cpm), the ratio of upper-contour to lower-contour, i.e., the

ratio of maximum and minimal energy level, is about 104, meaning , I T.. - 102. In the

second band (wave number larger than 0.1 cpm), the ratio Em,.,/ is about 101, i.e.,

Tý. / 7 - 33.

The first band of hypolimnion spectrum (Fig.4) is veiy short and narrow (the wave

numbers from 0.02 to 0.08 cpm), in which the ratio Er,, / Efr,,, - 10.3, thus, T, 1 T, - 4.5.

In the second band E TrIr, is only 10', i.e., Tf./,,Tý. -1.5. Therefore, the two terms,

"steak" and "bone", are used to visualize the spectral patterns of the epilimnion and the

hypolimnion respectively. In other words, the ratio of temperature variance has a large

seasonal range in the epilimnion and in the thermocline. However, it has a veiy small

seasonal range in the hypol inion. Comparing the energy levels shown Fig.3 and Fig.4, the

temperature fluctuation variation range in the epilimnion is much bigger than in the

hypolimnion (mean value 10 times). That implies that in Lake Geneva, which is large and

deep, internal waves affect mainly the upper layer and the influence on the lower layer may

be negligible in terms of energy level. In summary, epilimnetic temperature variations in the

fine scale range depe',d strongly on atmospheric forcing and are greatly influenc,;i by

seasonal temperature changes. Hypolimnetic temperature variations in the fine scale range

depend less strongly on atmospheric changes and are caused by internal waves which are

"slightly influenced by atmospheric changes.

4. Scale analysis

:I



The estimation of the length scales of the observed vertical overturning structures,

being potentially unstable, may help in understanding and quantifying vertical mixing in

particular in the lower hypolimnion where the traditional heat budget method does not give

any results (Michalski and Lemmin, 1992).

Turbulence mixing theories often depend on assumptions about the length scale of

turbulent eddies, and early Prandtl mixing length theories explicitly used the size of turbulent

eddies as a fundamental variable. Measurements of the length scales can provide evidence for

the theory. Thorpe (1977) proposed an objective method of estimating a length scale (the

'Thorpe scale', Lr) associated with overturning events in a stratified fluid. The method of

calculating L7 consists of ordering an observed potential density profile, which contains

inversions, into a stable monotonic profile. When the flow is homogeneous in the horizontal

and the density (temperature) inversions are the result of turbulent stirring, the Thorpe scale is

strongly correlated with the Ozinidov scale Lo (Dillon, 1982; Ivey and Imberger, 1989).

The Thorpe displacement is a measure for the vertical displacements caused by the

turbulent itotions before significant molecular diffusion has occurred (Thorpe, 1977). It is

also useful as a visual aid in defining the vertical extend of some mixing events. For dte

calculation of the Thorpe scale, the temperature profiles may be treated as density profiles

because they are monotonic with depth providel T>41C. A temperature inversion structure

indicates that the corresponding density profile is gravitationally unstable.

In this study, the inversion percentage is defined as a ratio of the region occupied by

temperature inversions to the whole range under consideration, It will be used to measure the

percentage of the water column which is potentially unstable and contributes to mixing, and it

indicates the development of turbulence in space.

If the averaging range covers the entire profile depth (between 20m or z,, and

260m), the resultant Thorpe scale, named profile Thorpe scale, will be a measure of the

typical inversior scale of the whole profile. Based on the data of station S1, S2 and S3 from

1988 to 1993, the profile Thorpe scales in different months can be determined by the

following equation:



L wt)NJ yer1 L(nonth, year, station)

xi

N s (year 1 -- year) E r

In the present study: (Eq.1)

month = 1, 12 (Jan. to Dec.); Ns = 3 (Station Si. S2, S3); year, = 1988, year1 1992.

Each L. is an average over many profiles which are assumed to be statistically

similar, and cover the same vertical range.

Profile Thorpe scales as function of month are shown in Fig.5. It follows that the

profile Thorpe scale has an order of 2m with an average inversion percentage of 15%. The

Thorpe scale during the cooling season is slightly larger than that during the heating season.

The probability of a certain Thorpe scale for a vertical region under consideration is

given by

P(LT, + Ad / 2) = n(J,.r1,÷4 )/N,a, (Eq.2)

where N,,, is the total number of Thorpe scales obrerved and n<•.d+d) is the number of

Thorpe scales which fall into a range specified between Lr- and Lr,+Ad. For each individual

profile which contains inversions, Eq.2 can be used to obtain the empirical probability

distribution. Based on the data from about 150 profiles, Fig.6a presents the cumulative curves

for stations Si, S2 and S3, giving probability distributions from 1988 to 1993. While there is

some scatter as expected, the highest probability always occurs at the scale less than 1 meter,

and the probability function is nearly flat at larger scales. There is little difference between

the curves of the three stations for the small scale range. The regression curves of the

empirical probability can be well approximated by a lognormal distribution (Fig.6b). The

points in the figures which are the results of Thorpe (1977) agree well with the overall trend

of Lake Geneva data. The probability in. Lake Geneva is lower for the very small scales and

slightly higher for the intermediate. scales. This dccuments the effect of the microscales which

have. LU•ot ucMn 3inas~u hero.

For isotropic turbulence, we may assume that u' v - w and u' IU - V IV - 0.1 in Lake

Geneva. According to the currents listed in Table 1, W w" i be an order of lcnds in the upper



layer and 0.1cm/s in the lower layer, where the dynamics are controlled by very weak

motions.

Table 1 Typical fluctuation of temperature in different layers

(data from Couchy 8182 camp i'n)

1am 75m 175m

"T. (-C) 2.0 0.4 0.1

U (cm/s) 6.0 3.0 1.0

Ntyma- (cps) 0.0222 0.0042 0.0028

Recently, Omstedt and Murthy (1993) found that Richardson numbers near the bottom

of Lake Ontario are mainly below the critical value of 0.25, indicating that the current shear

in this layer is strong enough to overcome stability and generate turbulence. In Lake Geneva,

instability may frequently occur and the overturning process produces patches of turbulence

and mixing in most of the rangc of the lower layer. In the epilimnion and thermocline region,

the turbulence was mainly damped (Richardson number much larger than 1 by using the

values in Table 1). That signifies stable conditions for the upper layer. However, some

generation of turbulence is probably still taking place in the thermocline region, as indicated

by a small inversion percentage in this layer.

5. Vertical mixing

Thorpe (1987) first proposed that a mixing coefficient can be determined by treating

individual vertical profiles. Considering an unstable range occupied by an inversion structure

(or eddy) of size L7-, where the buoyancy frequency is N, the eddy mixing coefficient will be

Kz = )rN-2 , (Eq.3)

where e eLN3 and the constant y is proposed by Ivey and Imberger (1989) as

y= R/I(- Rf). (Eq.4)

Rt is the flux Richardson number, indicating the mixing efficiency. It depends on the

magnitude of the ratio L,/L.J., and is proposed to be 0.20 in the case of LoILr =1, resulting in



,--0. 2 5 . This is close to the mean estimate ( y=0.24) obtained by Oakey (1985) and Gregg et

al. (1986). Dillon (1982) found the ratio Lo/L.r =0.8 for oceans and lakes. Although doubt still

exists about the appropriate value, we shall take those two constants (Rf=0.20 and

L/,kr---0.8) for Lake Geneva as Thorpe (1987) did.

The mixing coefficients are calculated for different seasons and different depths, as

shown in Fig.7 and Fig.8 for the heating season and the cooling season respectively. Fig.7

indicates that the mixing coefficient, as expected, increases with depth until a depth of about

100m, then keeps fluctuating down to the bottom. Inversely, K, during the cooling season

exhibits large scale fluctuations over the entire profile (Fig.8).

Using the heat flux gradient method (budget method), we estimated vertical mixing

coefficients for Lake Geneva. Fig.8 shows that the coefficients calculated by the budget

method are larger than those by Eq.3 in the upper layer during the heating season. This is

most likely because the mean temporal and spatial temperature gradients used by the heat flux

gradient method integrate over a large number of processes on different time and length

scales. In contrast, the coefficients, quantified by Eq.3 and shown in Fig.7 and Fig.8, are oely

the contribution to mixing due to the instantaneous inversion structures. For the lower layer,

the vertical mixing coefficients give values comparable to those obtained by the heat flux

gradient method falling into the range of 0.3 to 5 cm'2 /s. The order of K, shown in Fig.7 and

Fig.8 corresponds to the results in the literature for the hypolimnion of other lakes (Hutter,

1983; Wuest, 1987), and observations in the interior of the ocean: about 0.3 cm2 Is (Ivey,

1987). If the coefficient is an indicator of the intensity of turbulent morionm, we may conclude

that the intensity of turbulence and the potential of mixing in the hypolimnion of Lake

Geneva are comparable with that in other lakes and in the interior of oceans.

6. Conclusions

Temperature inversions indicative of vertical overturning structures were observed in

all profiles at all depths. Dynamic analysis distinguishes two ranges in z-t space: zone A, i.e.,
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a strongly stratified zone (upper 80m), and zone B, i.e., a weakly or non stratified zone (80w

to 260w). While zone A shows strong seasonal variation, zone B remains constant.

Energy density spectra of the finescale temperature gradients show that in the range

between 20m (just below the seasonal thermocline) and 80 m depth where mean temperature

gradients display a strong seasonal variation, the energy level changes with season, being

highest in August when stratification is strongest and lowest in February when the lake is near

homothermal. The spectral slope remains constant at around 2.5. From 80m to 260m depth

where seasonal variations are not evident, spectral energy is found to remain at the level of

that of February in the above layer during all seasons.

Thorpe scales calculated from the temperature profiles show slightly larger values in

the lower layer (80-260m depth) and during the destratified period. A lognormal distribution

of the Thorpe scale can be established for all profiles, which is comparable to the one found

by Thorpe in Loch Ness. The vertical mixing coefficients calculated by die Thorpe scale and

the buoyancy frequency in this study are smaller than those calculated by the budget method

for the upper layer during the heating season, and give values comparable to those obtained in

other lakes and in interior of ocean in the lower layer. Imberger and Patterson (1989) had

shown that in "typical" lakes the bottom boundary layer starts immediately below the

stratified layer. All three analyses show that in Lake Geneva there is a 200m thick

intermediate layer that has the characteristics of the ocean interior.
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1 Introduction

In the region where the Norwegian Trench approaches the coast of Norway in the
vicinity of the entrance to the Fensfiord (figure 1), strong bottom bottom currents (>
0.5 ms-1) have been observed. As shown in figure 2, the outer Fensijord bathymetry can

iM N

Figure 1: Location of the model domain

be characterized as an east-west trough superimposed on two sills then intersected by a
north-south channel.
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Figure 2: Fensfjord bathymetry as used in the model, viewed from the east
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Figure 3: (a) Fensfjord model bathymetry. Note that isobaths have been artificially
extended to the southern, northern and eastern boundaries in order to fill the rectangular
model grid. (b) along-trough bathymetry profile (corresponding to dashed line iD (a))
and initial interface locations. Current meter mooring locations are designated by (*)
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It has been hypothesized (McClimans, 1993) that strong bottom currents in the Fens-
fjord region are caused by sill overflow events associated with eddies in the Norwegian
Coastal Current and retroflected Atlantic Water in the Norwegian Trench. To examine
,the potential role of sill overflow dynamics in driving strong bottom currents, a numerical
model was developed for the region.

The Miami Isopycnic Coordinate Ocean Model (MICOM) (Bleck et al., 1992) was em-
ployed for this purpose. MICOM is a three-dimensional, primitive equation, general ocean
circulation model in which the vertical structure is represented as a series of constant-
density layers separated by isopycnic surfaces. Because positive-definite transport algo-
rithms are employed within MICOM to compute layer thicknesses, disappearing layers
(zero layer thickness) associated with isopycual outcropping at the surface, intersection
of isopycnals with the bottom and merging of internal isopycnic surfaces do not present
any difficulties in the numerical computations. This property is extremely important in
regions of abrupt topography, such as in the Fensfjord area.

2 Model Configuration

The model domain is as shown in figure 3a. The domain is i8 km long in the east-west
(x) direction while it is 11 km wide in the north-south (y) direction. The east and west
boundaries are open. Camerlengo and O'Brien (1980) radiation conditions are applied
to the upper two layers of the western boundary and to all three layers on the eastern
boundary. The lower layer on the western boundary is forced with a prescribed inflow
velocity. Free-slip sidewalls are imposed on the north and south boundaries. The model's
horizontal grid size is 200 m. Three isopycnic layers are employed in the model.

3 Baseline Experiment

A baseline experiment was conducted to examine the behaviour of the system under
conditions representative of October 8-15, 1993. Low-pass filtered time series observations
of along-trough lower layer currents at the 5 locations shown in figure 3b are displayed
in figure 4. The low-pass filter has a half-power point at 31.5 hr. The strong bottom
current event is characterized by a duration of nearly 4 days during which the along-
trough velocities remain near the maximum values. Since the response to this event is
quasi-steady, it was decided to perform a numerical experiment in which the lower layer
inflow velocity along the western boundary was spun-up from rest to a steady value of 0.1
ms-' over an interval of 2 days. The results are examined at day 10 of the simulation, by
which time a steady circulation has developed.

initially, the upper layer is 85 m thick and the middle layer is 145 m thick, as depicted
in figure 3b. The equilibrium layer thicknesses and along-trough velocity components for
the along-trough transect are shown in figure 5. The density difference across the upper
two layers, Ap12 , is 1.1 kg/m 3 , while the difference across the lower two layers Ap2 3, is 0.2
kg/m 3 , giving phase speeds of 0.81 ms-1 and 0.40 ms- 1 for the first and second internal
modes, respectively, at the mooring no. 7 location.

In this simulation, the lower interface rises to intersect the upper one, thus demonstrat-
ing the ability of MICOM to accommodate disappearing layers. The lower layer becomes
supercritical at the second sill (kin 7.5, figure 5). The maximum speed attained in the
supercritical state is 0.8 ms-1. The lower layer returns to a subcritical state after passing
through an internal hydraulic jump at km 9. The equilibrium lower layer along-trough ve-
locity components from this simulation are superimposed on the corresponding observed

4
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Figure 4: Low-pa:.s filtered time series observations of along-trough velocity components

and final equilibrium model values for(a) mooring 7 at 3 m above bottom (m-a.b.), (b)
monring 12- at 12 m.a.b., (c) mooring 16 at 12 m.a.b. (d) mooring 6 at 12 m.a.b. and (e)

'g mooring 5 at 3 m.a.b.

current :nooring time series observations in figure 4. While the agreement between the
si..;tdand obseirved values is generally good, the model tends to overestimate the

velofc.-i by as mud' as 60% in the supercritical region of mooring 16. This is not surpris-
in~g since neither layer entrainment nor interfacial shear stress has been applied in thisI simujation. The only disksipai~ion mechanisms active during the simulation are quadratic
bil't am stress and a deformation-d.-pendent horizontal viscosity. It is anticipated that
Ui. ýrfau'il mixing will be required to pcoduce realistic velocities in the supercritical zone
(Cristodoulou, 1986, Fernando, 19"1).

T'f.u obB,,Prved time series at mcijrirg 5 (figure 4e) displays a surge in the current datring
the intcrval October 12-45 that is not evident al. the other mooring locations. The current

(a) Along-Trouyi. F' .,,l) Interface Locations (b) Along-Trough Profile

Figure 5- (a) Layer interface and (b) ý0';ne-u-ýougb velocit~y component taken from a
trim~ect along the centru atxis of the trough
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(a) Lower Laye. Velocity .- (b) Lower LAyer Velocity W;-Z

- 44

Figure 6: Lower layer velocity in the vicinity of the ravine (a) with Coriolis and (b)
without Coriolis

speed associated the surge is significantly larger than the model equilibrium value. It is
likely that exchange processes in the north-south channel account for this anomaly.

Although the trough is narrow (z ' '• the vicinity of the critical section (kin
8-10) relative to the first and second iL. )rmation radius value6 of 6.4 km and
3.1 kin, earth's rotation still has an influence, can be seen from figure 6. The baseline
simulation (figure 6a), in which Coriolis is included, shows a rightward deflection of the
vectors relative to the non-rotating case shown in figure 6b. In addition, the high velocity
region in the rotating case is focused over the ravine (km 9-10), whereas in the non-
rotating case the velocities are high along a greater length of the trough (kin 6-10). The
maximum speed (0.8 ms-') is the same in both cases.

4 Sill Overflow Experiment

To examine the transient response of the system to a sill overflow event, an extreme
case is considered. The Atlantic Water of the lower layer is initially taken to be entirely
below and to the west of the first sill, as shown in figure 7a. An inflow is spun up in
the lower layer on the western boundary, as described previously. A sequence depicting
the evolution of the layer interfaces over the first 30 hours of the simulation is shown in
figure 7 (a)-(f). Within the first hour, whole bottom layer propagates as a front past
the first ridge. By hour 6, the flow has become supercritical over the whole length of the
second sill and the ravine (kmi 8.5-9). As the inflow progresses downstream, an internal
hydraulic jump forms at km 9, over the location of mooring 6. A second critical section
forms east of the small sill at km 13.5. Depending upon the stage in the development of
the overflow, the internal hydraulic jump can be to the east, to the west, or immediately
over the mooring location 6 at the bottom of the main slope. Model lower layer velocities
of 0.5-0.6 ' -1 for this case are consistent with observations at mooring 6, 12 m.a.b.,
of 0.4 ms-' from March 29-April 1, 1993, during what appears to be an overflow event.
As at mooring 16, model velocities would likely be reduced to more realistic values by
in-iusion of an appropriate entrainment parameterization for the lower layer.

5 Discussion

Although MICOM was designed for basin-scale and mesoscale general ocea, circula-
tion problems (Bleck et al, 1992), as opposed to the small-scale intermnl hydraulic pro-

6i



4

(a) Algng-Tmuq~ rcjh~wý k nt LcAWm (D) Mkg.TroghPrdM" anIýWc,.ou. [c) PvgýTM kfll.c. toc*IM

Figure 7: (a)-(f) Evolution of layer interfaces at times 0 hr, 1 hr, 6 hr, 12 hr, 18 hr, and
30 hr, respectively

cesses addressed here, it has proven to be a remarkably useful tool for t'"ese purposes.
Supercritical flow, as well as internal hydraulic jumps, can be simulated with MICOM.

The model displays no numerical difficulties in the presence of eve•. c.ý-tremeiy abrupt
topography. North of the ravine (x =8.5 kin, y =6.5 "km, on figure 3a) topographic slopes
as great as 1.0 axe present in the bathymetry. While it is likely that, in nature, processes
in such regions are non-hydrostatic, it is eacouxr.ging that MICOM is ro'bust enough to
"filter" potentially troublesome large vartical accelerations.

The model is producing w-,si:.Its which are, In a general sense, consistent with the
observations. A more detailed model-data comparison, in which the dynamic response
of the model1 iv assessed, requires that a number of uncertainties be addressed. On such
a small doirain (18 x 11 kmn), the influence of open boundary conditions is paramount.
Actual conditions a. the upstream (western) and downstream (eastern) boundaries are
unknown. They can only be inferred from information from the interior of the domain.
Furthermore, boundary conditions on the nor'th-south channel intersecting the domain
are unknown. In the simulations discussed here, the north and south lateral boundaries
are closed. However, in actuality, there is likely to be transport through this chanlnel,
as suggested by the observations at mooring 5 (figure 4e). Current development of the
model entails the implementation of flow relaxation boundary conditions (Martinsen and
Eiigwama, 19087),

Further validation of the model will also require information on the vertical density
structure at the same time that, currents are measured during an overflow event. Vertical
density profiles are required to assess the computed evolution of the layer structure.

In order to improve the description of supercritical flow regimes, the model require's a
realistic representation of lower layer dissipation and entrainment.
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Summary
Quantification of small-scale turbulent diapycnal diffusivity in the ocean thermo-
cline still poses a problem. Values inferred from microstructure measurements are
typically an order of magnitude smaller than values obtained with tracers. In order
to evaluate this discrepancy, a comparison study was conducted in the hypolim-
nion of a lake over a period of one month. Diapycnal diffusivity was estimated by
tracer (SF6) spreading, and a high resolution temporature profiler was used to
determine diapycnal diffusivities from dissipation rates inferred from temperature
gradient spectra.

The comparison reveals that the benthic boundary is the most turbulent zone
in the hypolimnion. Based on assumptions for the functional form of the buoyancy
flux in the bottom boundary layer, microstructure and tracer diffusivities agree to
within a factor 2. We conclude that the two techniques yield the same results as
long as the mixing processes are adequately sampled. The results of this study
support recent findings from the open ocean.

1. Introduction

Density structure and thermocline circulation in the oceans as well as the global
geochemical fluxes are affected by turbulent fluxes across isopyonals. Despite
extensive efforts by modelsrs arnd experimentalists over a long pcriod, quanti-
fication of small-scale diapycnal diffusivity in the ocean thermocline still poses a
problem. Values inferred from microstructure or dissipation measurements in the
main pyonocline in the open ocean (Gregg, 1987) are typically an order of mag-
nitude smaller than values found in tracer diffusion studies (Sarmiento et al., 1976;
Ledwel! et a!., 1086), which are c;ose to the canonical value of 1 cm 2s-1 (Munk,
1966).

This study attempts to explain this apparent important discrepancy observed
between the two methods. In a naturally density-stratified lake, the diapycnal
diffusivities were determined from the vertical spreading of deliberately injected
sulfurhexafluoride (SF6) and from temperature micrcstructure data taken during



the same period of one month. A lake was regarded as an ideal site as turbulent
mixing in the pycnocline of lakes is generally shear-induced, as in the ocean, and
lacustrine diapycnal diffusivities (Imberger and Patterson, 1989; Imboden and
WOest, 1994), which are usually determined by budget methods, show similar
values as oceanic thermocline diffusivities.

Assuming horizontal homogeneity, we determined the diapycnal diffusivity
Kt of the tracer by measuring the temporal rate of spread of the vertical tracer
variance o2(t) using the relation Kt = 0.5 • da 2 / dt.

The dissipation method, a completely different approach, uses the balance

equation for turbulent kinetic energy in density-stratified water. We assume statio-
nary and homogeneous conditions, where the production of turbulent kinetic
energy is equal to the loss by dissipation a plus buoyancy flux Jb, Which expresses

the work against stratification. Buoyancy flux Jb is related to diffusivity K, and
stability N2 by Jb = Ke.N2 (where N2 = - g-p-1 , ap/az; g = acceleration due to gravity;
p = density and z = vertical coordinate, positive upward). Furthermore, one has to
assume that the ratio of buoyancy flux Jb to dissipation v can be expressed by an
empirical function y'mix- This leads to the relation Ke = yrgy -" N-2 (Osbom, 1980). In

this study, dissipation e is determined by fitting the theoretical Batchelor shape to
spectra of temperature fluctuations. For ymix we applied different parameterizations.

2. Experiment

The comparison study was conducted in July 1989 in Lake Alpnach (Fig.1) where
local wind exposure leads to diapycnal diffusivities, comparable to ocean thermo-
cline values. Lake Alpnach has a length -5 km, a width -1 kin, and a maximum
depth of 34 m (Fig. 1). In July, density stratification is strong (maximum stability N2

-2.5.10-3 s-2 at 7 m) and almost unaffected by dissolved solids (salinity - 0.3 %o).

Shear-induced mixing is caused by internal seiching driven by predominantly diel
winds blowing parallel to the major axis (Munnich et al., 1992). Internal motions

along the lake axis were monitored at 10 min intervals by three Aanderaa
thermistor strings (Fig. 1), each consisting of eleven evenly-spaced sensors. For
the tracer experiment, 52 g of SF6 were released in two streaks over a total length
of 6 km (Fig. 1) at a depth of -17 m in Lake Alpnach. To minimize the initial
diapycnai spread of SF6, injection was adjusted to the isopycnal corresponding to
the 80C isotherm using a CTD. From the CTD record during injection, we
calculated an initial variance of the vertical tracer distribution of a0

2 - 4.4 m2 (Fig.

2). To determine the diapycnal spreading, 57 SF 6 profiles were collected over 8
days. SF6 concentrations were measured using a gas chromatograph with an
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-Total volume 0.10 kijn 3  100
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lFigiA Map of Lake Alpnawh (situated in cent=-l Switzerland): The locations of thermistor
strings, labeled A (length: 20 ma), M (30 ml. and N ( 15 mo), are marked b y "+". A mewo-
rological huoy was moored at M. Depth contours, Icke surface elevation and heights of nearby
mountains (asterisks) are given in ma a~s.L The outlet of Lake Alpiach is a passage- 3 in deep
connecting Lake Alpnach to Lake Lucerne.
Inset: Cumulative distribution of the square of the wind speed at wooring M (vectors shown in
the direction of the wind). Adapted from Milmach et al. (1992).

electron-capture detector (Schiatter et al., 1990). Simultaneously. CTD pr3files
wera collected to match the SF6 sample depth with temperature (density).

On 9 days, 130 casts of temperature inicrostructure were collected with a self-
contained profiior (Carter and Imberger, 1986), rising at about 0.1 m/s and
collecting data at 100 Hz from a~ pair of FP07 thermistors. Data was filtered as
required for response matching (Fozdar et al., 1985).'Ic; select those mi~xing
events whose temr~erature fluctuations fulfill the criterion of stationary turbulence,
a special algorithnm was used (Imberger arnd Ivey, 1991). Power spectra were
estimated from these segments, and dis~ipation e was determined by a Batchelor

fit (Gibson arnd E.zhwartz, 1%CZ; Dillon and Caldwell, 1980). The quality of each fit
was cl-ecked, and subsequenit analyses were carried out using odliy the~ datai from"

segments following the characteristic Batchelor spectrum.
For each of t~he 130 casts, bin-averaged dissipation ef~lirnates ware obtained

for two series of bins: 'depth bins" bigginning at the lake sv.rface and extending
downwards, and "height bins' beginning at the lake bottom and extending up-
wards. Averages~ were weighted with the segmenit iength by assum~ing zero dis-

ýEl
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the vertical profiles.

sipation outside turbulent segments. Since most of the observed hypolimnion is
non-turbulent, the averages are clearly lower than the individual dissipation in the
turbulent segments. The arithmetic mean, as well as the maximum likelihood
estimate (Baker and Gibson, 1987) were both calculated.

3. Observations

Tracer SF6 : Within the first 10 days after injection, SF6 concentrations were
highly variable due to input heterogeneities. Thereafter, horizontal mixing
(Peeters, 1994) eliminated horizontal gradients. To achieve statistically
representative vertical variances of the tracer distribution, we averaged the profiles
to obtain daily means. To remove reversible displacements due to internal
seiching, SF6 profiles were averaged in bins of constant temperature and

averages were retransfered to depth by using the daily mean temperature profiles.
The increase of a2 (from 2.1 m to 4.3 m within the one month period) is plotted in
Fig. 2 as a function of time after injection. The diapycnal diflusivity was calculated
by linear regression and yielded Kt= 0.5.-2a t = 0.030 cm2s-1 (Fig. 2).

Wind and Internal seiches: The diurnal wind (Fig. 1) excited intoenal seiching
motion as exemplified in Fig. 3. Spectral analysis revealed two dominant periodi-
cities that correspond to the first vertical first horizontal and second vertical first
horizontal seiche modes (Mannich et al., 1992). A subsequent field campaign
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Fig. 3: Part of the time series (July 10 to 26 1989) of the depths of two selected isotherms
calculated from thermistor chain data taken at mooring N. Data was low-pass filtered with a
2.5 h cutoff. Two peak periodicities of 24 h and 7.5 h are well developed. The shorter period
(see e.g. July 11) represents the first vertical mode, and the 24 h seiching (e.g. July 14 to 20)
the second mode (Mdnninch et al., 1992).

revealed that for both modes, bottom currents along the major axis of the lake
correlate perfectly with the displacements of the hypolimnetic isotherms in Fig. 3

(Gloor et al., 1994). The corresponding phases reveal that the whole hypolimnetic
water body is excited by modes of first horizontal structure. With this simple

structure it was possible to determine the basin-wide hypolimnetic velocity field by

a topography-dependent seiche model (Minnich, 1993). Thus we were able to

identify the regions of high seiche-induced vertical shear, relevant to diapycnal
mixing; i.e., the upper thermocline and the benthic boundary layer.

Dissipation: Arithmetic means of dissipation i, averaged in vertical "depth bins"

(over the 130 casts), cannot directly be used to calculate diapycnal diffusivity since
these horizontal averages do not necessarily yield a representative dissipation.

Since most of the casts extended to-depths between 20 and 32 m, the upper ther-
mocline averages contain data mainly from the interior of the water body, whereas

deep water averages are dominated by turbulence in the bottom bounda,, layer. In
order to obtain adequate averages, we have divided the water column into two

regions: "interior" (distance from bottom > 10 m) and "boundary layer".
Fig. 4 displays separate arithmetic averages for the two regions in "depth bins"

(Fig. 4a) and in "height bins" (above sediment; Fig. 4b). Dissipation in the interior

region decreases with depth, rapidly reaching its detection limit (Fig. 4a), whereas

dissipation increases towards the bottom (Fig. 4b) and is approximately
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Fig. 4: Average dissipation of the 130 casts: a) Averaged in "depth bins"; b) In (bottom-
parallel) "height bins". The single sided error bars are the variances of the maximum
likelihood estimate. Within these error bars, dissipation follows a h01 slope.

proportional to h-1 (h = distance to the local bottom), as predicted by the classical
boundary iayer theory. Within the vertical range of interest, i.e. between 12 and 20
m depth, where over 50% of SF6 was located, dissipation is dominated by turbu-
lence in the benthic boundary layer, as shown by a simple calculation based on
the ratio of sediment surface A to water volume V.

4. Comparison of Diffusivities

Like dissipation, the average buoyancy flux in 12 to 20 m depth comprises contri-
butions from the "interior" water body and from the "boundary layer". The results of
the two different methods used to form volume averages are given in Table 1. For
case (a) we assumed that the dissipation E is proportional to u3 (kh)-1 down to the

boundary of the viscous layer (&,), and that the buoyancy flux is a constant fraction

"Ymix of dissipation throughout the boundary layer. In case (b) we assumed the
buoyancy flux to increase towards the sediment, as in (a), but to remain constant in
the homogenized lower part of the bottom boundary layer Smix. Integration formula
and parameter values are summarized in Table 1 and described in more detail
elsewhere (Wuest et a!., 1994).

Both results are compatible to within a factor 2 with the tracer diffusivity (Fig. 2,
Table 1). A physical interpretation of the two cases reveals that (a) probably yields



Table 1: Comparison of diffusivities at 17 m depth

Method Applied formula K (cm2 /s)

1 ~a2

Passive tracer (SF 6 ): 1 at 0.030 ± 0.004

Dissipation (Composition of "interior" and botton. "boundary layer'):
5B

a) Integration to 8v (1) m[iOX 17m fA U3(kz)Adz] 0.027 0.004N2 + a , k)- z .274 .0

8v

u3"Ymix ,17m+ __{1un*_. (
b) Constant buoyancy flux(2) --N-.[e 1 +] LA- +ln 0.017 0.003

(1) Integration down to the viscous boundary layer of thickness 8v; P.17m: dissipation in the interior;I I(

N2 : stability; U*: friction velocity; k: von Karman's constant; 5B =1Om (thickness of the Prandtl layer).
(2) Assumption of constant buoyancy flux in the homogenized boundary layer of thickness &mix.

an overestimate of the buoyancy flux (and consequently of the diffusivity), and that
(b) is more a realistic assumption as mixing in a mixed layer (of thickness &Mix) is

less efficient. Taking into account that tracer undersampling generally over-

estimates diffusivity, agreement is most probably even better than a factor 2.

5. Conclusion

This study, which compares diffusivity ir. the thermocline of a lake over a period of

one month using tracer and temperature microstructure techniques, yielded two
important results: (1) the main source of turbulent kinetic energy is the benthic

boundary layer; (2) diapycnal diffusivity is due to a combination of buoyancy flux in

the interior and at the boundary layer. If averaged adequately, the results obtained
by Nt Wo me•t Mo show a.nreement to within less than a factor 2, which is less

than the discrepancies found in the ocean. The results of this study support recent

findings from the open ocean (Ledwell., 1993).
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Abotract
Quantification of mixing in the surface layers of lakes is

important for the understanding of various biological processes.
Our study is a case in point where we attempted to obtain mixing
rates of fertilizer added to the surface layers in order to
enhance biological productivity. In this report we focus on the
observations taken on June 8, 1992 in Kootenay Lake, British
Columbia, during a period of strong near surface stratification
and shear as well as indications of vigorous mixing at one of
three moored temperature profilers. These observations were made
near a constriction in the lake cross-sectional area. An acoustic
doppler current profiler (ADCP), a conductivity-temperature--depth
profiler(CTD), dye patch dispersion and meteorological data
complemented the mooring data.

During the middle of that day strong winds (7 m/s) blew for
6 hours. Shortly before the start of the wind and after six hours
of steady wind high frequency temperature fluctuations were
observed at the thermistor chain located in the flow constriction.
The two events appeared to be active at this location for over an
hour and a half, with the region of greatest activity occurring
from a depth of 10 m to around 20 m. At the beginning of the
mixing period continuous temperature profiles recorded with the
CTD were smooth, however, three hours later the temperature
profiles had developed a step-like structure, indicating possible
vertical mixing. At the same time current shear measured by the
ADCP, when combined with the observed buoyancy frequency profile
deduced from the temperature profiler, yielded gradient Richardson
numbers in the range 0.25 to 0.6 over upper 20 m of the water
column at locations several kilometres downstream in the direction
of flow.

Additional evidence of vigorous ve tical mixing was derived
from concurrent observations of dye injected into the upper 10 m.
From direct measurements of horizontal dye dispersion and
dispersion theory (Fischer et al. 1979) it ic possible to infer
estimates of the rate of turbulent kinetic energy dissipation.
Dissipation rates from the dye and scaling analysis of the high
frequency temperature fluctuations are from ten to one hundred
times larger in the mixing zone than those found in the ocean and
in other lakes.

INTRODUCTION

The interaction between basin-scale motions in lakes and the
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small scale physics thought to be responsible for mixing continues
to be of great interest to lixnnologists. In the long but narrow
lakes of concern in this study Hamblin (1977) observed high
frequency internal waves in the vicinity of a large river inflow
and at a mid-lake location during episodes of intense basin-scale
internal seiche activity, Hamnblin(1978). Farmer(1978) observed
high frequency internal waves and evidence of raixing following the
passage of internal surges in a long narrow lake. Such
observations in lakes have rarely been accompanied by measurements
of the background shear necessary to interpret the suspected
mixing events unlike the case in the ocean where a large number
of studies have concurrently observed both the large and small
scale physics, for example, Carr et al.(1992), Marmarino and
Tramp(1992 & 1991) and Peters et al.(1991).

The desire to better understand mixing in stratified
environmental flows as exemplified by our field observations of
some small-scale events which possibly indicate mixing provides
the focus for the present study. The emphasis here is on the links
of the small-scale physics to the large-scale physical setting as
determined by the meteorological forcing, lake basin-scale
internal wave-induced shear and stratification.

EXPERIMENTAL DETAILS AND DATA ANALYSIS

During a 2-week long study of the mixing characteristics of
the surface waters of Kootenay Lake, British Columbia for the
purposes of optimizing the dispersal of nutrients added to the
lake, we observed several small-scale events at one of three
moored temperature profilers on June 8, 1992. The data discussed
here were observed at a meteorological station, a thermistor chain
and by two motor vessels whose tracks are shown in Figure 1.
Moored temperature data were also collected at the meteorological
station and at a another location about 9 km to the north of the
station. The meteorological station consisted of a raft: supporting
wind speed and direction sensors, relative humidity and
temperature of the air and incoming solar radiation. A
solar-powered data logger recorded all variables every ten
minutes. The position of the vessels was determined electronically
by Miniranger fixes. At the thermistor chain temperatures were
recorded at one-minute intervals over ten unevenly spaced depths
from I m to 50 m. Aboard one vessel a yo-yoing CTD profiler
recorded temperature, conductivity and Rhodamine dye fluoresence
profiles while on the other a 1.2 M*Iz ADCP of RDI manufacture
sampled flow over 1-m depth bins down to 25 m. The ADCP data were
used to estimate average shear over 2-m depth ranges from five
sequential velocity profiles selected for least variability in
ship's speed and heading. The error in shear is estimated to be
0.006(s-'). Due to cross-bin averaging the narrow-band ADCP is
known to underestimate shear. Thus, an experiment was conducted
on another data set where ADCP and standard current meter
measurements were observed concurrently. Based on the 70
individual comparisons of the 2-m shear between the two methods
of current measurement there was no statistically significant
difference in shear. At the approximately 2 rn/s ship speed thu
shear would be averaged over a distance of 150 m. It was found
that averaging over greater or smaller distances increased the
variability of the shear. In order to calculatte profiles e'
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Richardson number, Ri, associated with the shear, 30-min average
profiles of stability or Brunt-Vaisala frequency, N, were formed.

)i - du p dz

dz dz

where p is the density ,g is the acceleration of gravity and u and
v are the horizontal velocity components.

KOOTENAY LAKE STUDY AREA
-5
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Figure 1. Study location, Kootenay Lake, and various station
locations. Time is Pacific Daylight.

Air and water temperatures are displayed in the upper panel
of Figure 2 for a 24-hr period covering the attended field
activities. Similarly the wind speed and direction are shown
below. Since the wind stress and the buoyancy flux are the major
surface forcing terms for turbulent mixing, the lower two panel
of Figure 2 present these quantities. Surface heat fluxes were
calculated from standard bulk formulae (Fischer et al., 1979).
Incoming longwave radiation was calculated from air temperature
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and inferred cloud cover. In the bottom panel friction velocity,
u', is compared to a buoyancy velocity scale, w*, assuming the
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multiplied by the usual mixed layer efficiency factor of
1.23(Fischer et al.,1979).

Unfortunately, no direct measurements of turbulence such as the
rate of turbulent kinetic energy dissipation were available.
Instead, turbulent mixing was inferred in bulk from the horizontal
and vertical spreading as determined by the shipboard profiler of
a 8-Kg release of dye at the position marked 10:21:48 on Figure
1 over a 5-hr period. Secondly, small-scale temperature *activity"
served as an indicator of turbulent mixing. This activity has been
defined by Marmarino and Trump (1991) as the magnitude of the first
difference of the 1-min temperatures at each thermistor normalized
by the local vertical temperature difference. According to
Marmarino and Trump this activity parameter serves as a
qualitative measure of the likelihood that mixing has occurred.

DISCUSSZON

During the present experiment straitification was developing
rapidly. From an examination of the isotherm displacements at the
other thermistor chains to the north it appeared that a first mode
internal seiche was taking place with flow at the surface to the
north until June 10. The drift of the dye as seen in Figure 1 and
the ADCP data corroborate this with both indicating a northward
flow of 25 to 30 cm/s at the surface decreasing to much lower flow
at 25 m depth. Contours of vertical shear squared, stability
frequency, and Richardson number are shown on Figure 3 as a
function of depth and horizontal distance along the line
A-B(Figure 1) from the dye release point. It is noteworthy that
shear is strongest towards the southern end of the line which is
closest to the narrows or constricted flow. A plot of the shear
as a function of time(not shown) does not show a trend despite the
onset of strong wind forcing at 11:30. This suggests that the
northward trending flow as evidenced by the dye trajectory of
Figure 1 and the ADCP data is associated partly with basin-scale
internal waves and consequently should have existed before the
period of data displayed in Figure 3. The likely southward
intensification of the shear and continuity consideration suggest
that at the thermistor chiain the average shear could be up to
twice as large as that measured by the ADCP in the more open
portion of the lake to the north. A plot similar to Figure 3(also
not shown) based on this assumption and the observed temperature
data at the thermistor chain indicates Richardson numbers less
than the critical value of 0.25 over the upper 6 in of the water
column. for the entire 3-hr period in contrast to a much more
limited area of the plot shown in Figure 3. Either plot
dexionstrates that the stability frequency is relatively constant
in the area of the dye release but that low Richardson numbers are
due to intensified vertical shear as the surface is approached.

Mixing in the study area may be inferred indirectly by
comparison of the CTD temperatures with those upstream at the
mooring allowing for varying advection of fluid parcels at the
appropriate depths. Stability frequencies at the mooring are, in
general, twice as large as those downstream. As well, despite the
surface heating due to penetrative shortwave radiation and
buoyancy flux surface temperatures are 1.5 1C less in downstream
zone, presumably due to vigorous mixing. Finally,the
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II

While a surrogate for direct measurements of turbulent
mixing, the temperature activity is a more direct indicator of
turbulent mixing than the above consideraLions. The activity plot
of Figure 4 suggests that turbulent events over depths from 10 to
20 m occur just before the wind increases at the meteorological
buoy and also after the wind has been blowing strongly for 4 to
5 hours. It is evident from Figure 2 that during the wind event
the wind stirring is about the same magnitude as the counteracting
buoyancy flux. Thus, turbulent energy input from the wind and
associated wave breaking may not be dampened and so diffuses
downward. The question arises of why the first mixing event occurs
apparently before the wind strength increases. This may be due to
the direction of the wind disturbance travelling in the same
direction as the wind. Since the wind was observed about 9 km
north of the thermistor chain it may have taken an hour for the
wind disturbance to reach the meteorological raft.

Activity (m/s)

04

A -10-

-20

8 10 12 14 16 18
Day 160 (hours)

Figure 4 Four levels of temperature activity at the thermistor
chain.

The temperature activity seen in Figure 4 is associated with
vertical isotherm displacements of amplitudes of about 1 to 2 m
and periods of 6 minutes. Since temperature activity was not
observed during the period of nocturnal convective cooling, it is
hypothesized that the activity is evidence of shear instabilities.
If these displacements are associated with Kelvin-Helmholtz
instabilities then the scale of the most energetic overturns, l,
may be estimated as 0(0.1 times the billow height or 10-20
cm) (Marmarino and Trunp, 1991). A 10-cm overturning scale
corresponds to an rate of turbulent kinetic energy dissipation of
(1,/1.25)2 N' or 5.x10-4 cm2 /s 3 . The dissipation downstream may be
inferred from the dispersion of a patch of dye according to the
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4
standard scaling arguments(Fischer et al., 1979). Measured
horizontal dispersion coefficients of ).095, 0.7 and 0.12 m2 /s and
patch sizes of 95, 400 and 300 m respectively are consistent with
a dissipation rate of 1 to 6xl0- cm2/s'. These rates are from 10
to 60 times larger than oceanic values(Fischer et al.,1979) and
those observed in other kes(Lawrence et al., 1994). As well as
enhanced vertical mixing horizontal mixing may be accelerated by
turbulent eddies shed by flow separation downstream of the flow
constriction. We have mapped eddies during the ADCP surveys near
promontories in Kootenay Lake. It is noteworthy that dissipation
is possibly even larger in the restricted channel at the
thermistor chain.

CONCLUSZONS

The ADCP measurements are a useful complement to the
underway CTD profiles and permit Richardson numbers to be
calculated and consequently zones of likely mixing to be
identified. We conclude that vigorous mixing can occur even during
periods of active development of stratification under certain
conditions. Vertical shear associated with lake basin-scale
internal waves which has been enhanced by coincident wind forcing
of even short-term duration and focussed by basin geometry may
increase to critical levels leading to mixing. Under these
circumstances, despite the stabilizing effect of buoyancy flux,
mixing rates as inferred from dye dispersion and fine-scale
temperature activity are seen to be more intense than typical
mixing rates found in the ocean and other lakes. Direct
measurement of such turbulent quantities as the rate of
dissipation would have been required in order to parameterize the
mixing rates in terms of readily observable large-scale variables
such as wind, shear and stability.
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preparing this manuscript.
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Abstract
An analysis of wind and thermistor chain data from a long, narrow, stratified lake is

provided. It is apparent that the forcing is very sporadic relative to the likely response
frequencies. A vertically integrated approach provides results that differ in some respects
fxom inferences based on data from specific depths. This leads to the observation of
horizontal mode two internal waves and in one instance, over a two month period, it is
possible to infer potential energy losses of up to 60% from the energy observed in the
first peak tilt after the wind event to the peak a single wave period later.

INTRODUCTION

Internal waves are a ubiquitous feature of stratified lakes and their description
has received worthy attention in the literature (e.g. Hutter 1984). The elucidation of
their behaviour is important for a number of environmental and social reasons. For
example, salmon populations in British Columbia, Canada, are extremely sensitive to
rapid temperature changes. Any responsible artificial modification of lake inflow and
outflow must consider the internal dynamics.

Considerable advances have been made in correctly identifying the various modes
of oscillation (Hutter 1984) and identifying the nature of waves (Thorpe 1974, Farmer
1978). In this paper we consider field data in the context of a simple lake model.
The emphasis here is on the links between the wind, the internal wave response and
subsequent amplitude decay in long narrow lakes where the periods of the fundamental
waves axe long and, because of width constraints, the effect of the earths rotation is
secondary.

ANALYSIS
The analysis is pursued by considering a depth averaged wave equation derived from

the horizontal component of the equations of motion and continuity for an enclosed basin
of fluid of length L, constait depth h and breadth with an overall density difference
represented by a modified gravity g' and forcing f (see Fig.1). We arrive at the following
equation

[U n - cou Z1 + ATL(u) = ft + D(k, u) (1)

where u is the horizontal velocity, co is the long-wave speed in the system given by

c =



L >

Figure 1. Schematic illustration

where g' is the modified gravitational acceleration and k is the eddy diffusivity. The
t and x subscripts refer to partial differentiation with respect to the temporal and
longitudinal dimensions respectively. Non-linear components of the equation of motion
are compiled within NL(u), the forcing term in the original equation of motion is given
by f and the diffusive effects are contained within D(u, k).

Forcing variations: The vertical integration has removed the depth dependence which
negates any detailed vertical specification of the stress distribution. The forcing ap-
pears in the wave equation formulation of (1) only through its temporal derivative.
Consequently in a linearised and non-diffusive system the phase difference generated
by the duration of a wind event is fundamental in gauging the response. A change in
the forcing initiates the wave response, which, in the absence of the D and NL terms,
continues. If at some later time the forcing returns to its initial condition a negative
wave emerges. In the unlikely event that the wind duration is some multiple of the
fundamental wave period there would be zero resultant motion. However the inclusion
of losses and dispersion in (1) removes this possibility.

Non-linearities and Diffusion: While the non-linear interactions are clearly important

they are treated extensively elsewhere. For the time being we shall concentrate on
identifying how energy gets from the wind field into the linear wave field. The coefficient
of eddy diffusivity is a function of the flow, consequently, holding D constant is a weak
assumption. Energy from the wind may be transferred to transverse motions, turbulence
and higher vertical modes (Mortimer and Horn 1982, Miinnich et al. 1992, Roget et
al. 1993). Most of these "losses" involve transfer of energy to spatially and temporally
varying processes. Thus, we can assume that the diffusive term in (1) is represented by

(( o))(2)

OBSERVATIONS
The wave equation (1) is discussed here in the context of the extensive data set

described by Wiegaxd aud Ca•naiack (1986). Th-e data we are concerned ith here is
that recorded by three thermistor chains placed at the North end (SC), middle (PB)
and South end (TB) of Kootenay Lake in British Columbia, Canada (Fig. 2). The lake
is 110 km long, 4 km wide on average and between 80 and 140 metres deep with a very
steep shoreline. A pair of meteorological stations recorded radiative fluxes and wind
forcing.

The data record lasts for almost three years and as such is one of the longer records
available of these types of observations. This paper will cover only the middle Spring-
Summer-Autumn period of 1977. The largest internal waves appear in the latter half



of this period from late-July through to the end
of October; the enhanced activity in October
observed by Thorpe (1974) and others is not
evident in this data.

Wind data: A digital low-pasý filter, using an 8
hour period for the cut-off, was used to remove SC
the high frequency information in the wind >4
speed data U4, recorded at a height 4 m above
the still-water surface (Fig. 3a). The modified
data show peaks of 8 ms-1 and a 10 month
average of around 3 ms-1. Fanmer (1978) and
Stevens et al. (1993) illustrate the directional
variability of the wind field over the surface

of a lake, consequently, making general state-
ments about the wind direction and strength
based on point measurements from a few loca-
tions is ill-advised. Fig. 3b also includes the
temporal derivative of the forcing term U4' that West
indicates the spikiness of the energy put into Arm PB
the water column. Finally, as discussed below,
differences in the centres of ma&, between lo-
cations are shown in Fig. 3c.

Two analyses are applied to the wind time
series; firstly by including the direction to find
some along-axis component and then defining TB
starts and ends to wind "events" based on zero x
crossings it is possible to get an indication of
the forcing. The average wind speed during 20 k
this period is calculated and the compilation of
total number of events over the full three year
data set indicate that there are only about 5 to
10 events of sufficient duration to generate the Figure 2. Kootenay Lake
steady state conditions described by Spigel and
Imberger (1980). A scatter plot of "duration" shoreline and station positions
and wind speed (Fig. 4) shows that low speed
wind events generally last for a few hours but
that some of the strongest wind events can last
for many hours.

Because the fundamental period varies between one and two weeks over the summer
this makes for coarse results when examining the temporal distribution of the results
of Fourier transforms of the wind data. An alternative analysis involves applying the
wavelet transform to the data (Gao and Li 1993); this has improved temporal resolu-
tion at the expense of frequency response. Practically speaking the technique involves
convolving a time series with a window (the kernel) that has temporal and frequency
information. In a series of convolutions the kernel is allowed to spread (dilate) so that
it identifies features of the same form as the kernel but with different basic frequency
distributions.



Wavelet transforms of the absolute wind speed for the 1977 Spring-Sumner-Autumn
period have captured four distinct pulses of energy centered around a period of 7 days.
This corresponds to the first mode period in the middle of Summer but is up to 50 %
too rapid earlier and later in the season. The roughly weekly pulses of wind energy
correspond presumably to a peak in the frequency distribution in ,he regional weather
patterns.

Temperature data: In keeping with the vertically integrated wave equation the temper-
ature data at various depths is converted to density and then such properties as the
centre of mass and the average density are estimated from the discrete data. The centre
of mass calculations are relative to the fluid of minimum density recorded in the time
series.

Differences between the centres of mass (,C (Fig. 3c) at the three stations (SC-PB
and PB-TB) exhibit quite different characteristics. The most apparent observation is
that the bulk baroclinic slope is of opposite sign in the two ends of the basin; the centre
of mass being highest at the PB station. In addition, the weaker Spring-early Summer
stratification leads to markedly greater excursions in the centre of mass.

DISCUSSION

Internal Waves: The lack of coherence between spectra of the depth of the 80 C isotherm
at different locations led Wiegand and Canmack (1986) to conclude that they had cap-
tured observations of underdamped, free oscillating seiches. This means that observa-
tions at any time are an integrated response to many previous forcing events. However,
a convolution of the baroclinic tilting based on differences in the C,, time series' at the
stations with the wind speed record yields some coherency. The difference in the centre
of mass position between Schroeder Creek and Pilot Bay yields an identifiable peak in
the convolution suggesting a phase difference of approximately 2 days. This convolution
has other peaks of comparable amplitude approximately 7 days apart; these axe related
to the cycle in the wind field. This coherence does not exist in the Pilot Bay-Twin Bays
data.

Anecdotal evidence reported by Wiegand and Carmack (1986) suggests that storm
driven wind events may move up the West Arm and diverge around Pilot Bay moving
Northward in the North Arm and Southward in the South Arm. The obvious result
from this is that horizontal mode two waves might be forced. These have periods of 3.5
days or greater and axe thus much more likely to be forced to their a mximum steady
state amplitude. Figure 3c clearly shows the opposite sign of (9,,/Ox in the North and
South Arms. While this constant difference in sign can pocsibly be related to variations
in local mixing, the transienL response shows the slopes change in magnitude by similar
amounts but in opposite directions. " ..

Correlation coefficients, p, between the the filtered U. and the difference between
Cm's at the various stations are shown in Fig. 5abc where each panel is based on a two
month segment of data. The response time of the fluid is so slow relative to the wind
event duration that there is no correlation between the Cm's and aU,/Ot. Representative
periods of the first modes are 16, 7 and 10 days respectively. At most instances the full
basin correlation lies between the coefficients for the two arms. The Spring record (Fig.
5a) has generally lower values of p than the two later records. The broad peaks and low
values are in part due to the fundamental period changing by a factor of 2 during this
time making correlations over useful times difficult to achieve. The SC-PB and PB-TB
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Figure 3. Time series' of (a) Wind Speed U4 (b) aU43o /&and (c) differences in
between the stations. The (m's are measured from the surface down.

having different signs indicating a possible horizontal mode two response although the
setup occurs more quickly than basin scale periods indicate. The same-sign correlation
at around 9 days is equivalent to the half period of the first horizontal mode.

The mid-Summer record of Fig. 5b is quite different in structure with obvious same-
sign correlations at 3.5 and 8 days. The peaks at -7 days could be linked to the regional
weather bringing in strong events on a roughly weekly cycle. The PB-TB record has
p = 0 for up to two days before the correlation is apparent whilst the North Arm is
tilting downward.

The final (Fig. 5c) late Surnmer-Autumn record clearly shows the opposing signs
of p and if this indeed were the setup due to a horizontal mode two wave then we would
expect the amplitude to peak at around 3.5 days if the wind were of sufficient duration



(2 days). As indicated by Fig. 4 this is
unlikely so Fig. 5c shows the appearance -
of a partially developed mode two wave.
This is followed by a weaker equivalent
to that seen in the Summer record with
a peak, most obvious in the South Arm, o-
at around 5 days.

Damping: Based on one clear observa-
tion from Fig. 5c where, over one cycle 6%
of the second horizontal mode, we see the t
maximum local p decrease from 0.14 to s
0.03 in the North Arm; a drop of 79%. ""
The South Arm is significantly less dis- • 4 "
sipative with a decrease of only 45 %. * " .
As this quadratically represents the po- )f.,;:: -: "
tential energy we may assume that this * "
is equivalent to between 60% and 20% 2 :i '

of the potential energy being lost in one , "
wave cycle. Monisraith (1985) furthers -

this avenue by considering the potential 0
energy of a tilted baroclinic structure in 0 20 40 60 80 100
a small lake and comparing this to en- duration (hrs)
ergy lost through typical values of dissi-
pation. He shows that it is possible to Figure 4; Averaged wind velocity as a
lose the potential energy to viscosity in a function of duration
time comparable to the wave period. If
we reverse this argument it is possible to
show that a dissipation per unit mass of
order of 10-9 m 2 s- 3 is required to provide
the measured loss in energy. This is a
relatively low value (Imberger and Ivey, 1991). However, observations have shown sig-
nificant transverse motion introduced by the numerous variations in basin width (the
bottom is relatively smooth) and we speculate that a portion of the energy will first
be transferred to transverse motions generated by variations in channel width. The
enhanced shearing associated with this will lead to higher levels of dissipation through
(2).

In this paper we have shown that (i) we can correlate the baroclinic response to
the wind, (ii) horizontal mode 2 waves are may be generated and (iii) we can crudely
estimate the loss of energy from the basin scale waves. We have demonstrated that
integrated properties of the water column prove to be more informative with respect to
longitudinal variations than information derived at a single depth. Furthermore, it is
the energy applied to the fluid that generates the internal waves, so that comparison
between forcing and response is better served by using the wind energy.
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Banifield Marine Station Research Associate Award.
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STRATIFIED FLOW IN A LAGOON

P. Pt.CHON, J-M. JANIN and F. LEPEINTRE
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ABSTRACT

The numerical model TELEMAC-3D simulates three-dimensional flows in rivers and in coastal
zones. It is used to study for instance mixing of fresh and salted waters, thermal dilution,
mixing of pollutant in ambient waters, suspended sediment transport.

The code is described and the simulation of the water flow and the salinity stratification in the
lagoon of Berre (Mediterranean Sea) is presented. The numerical results are in good agreement
with the available measurements.

1. INTRODUCTION

For about a decade three-dimensional models have been used in practical studies to compute
free-surface flows in rivers or in coastal areas for problems related to pollution, thermal dilution
or suspended sediment transport.

LNH had a code based on finite difference methods to solve 3D flows (Coffd et al., 1982).
However that code obviously could not include the "user friendly" possibilities allowed by
recent developments in finite element methods, e.g. local refining of the mesh, without
increasing dramatically the computation cost. Therefore, using the modern numerical
techniques, a new model called TELE: -XC-3D was developed inside the system TELEMAC
which also include models for 2D horizontal flows, wave propagation, sediment transport and
water quality processes.

The lagoon of Berre is a rather difficult case both for numerical and physical reasons. For
numerical reasons because the simulated duration is quite long, of about height days, and a
small numerical inaccuracy can amplify and can strongly affect the final result. The turbulence
phenomena is also a difficult point because it is partly due to action of wind and induced waves
which sometimes destroys the stratification. However for the tested conditions presented here
the wind intensity is moderate and its effect on the mixing of momentum and salinity is not
considered.

2. DESCRITION OF THE NUMERICAL MODEL TELEMAC-3D

2.1 THE EQUATIONS

The basic equations of the model are the Navier-Stokes equations and the pressure is assumed
to be hydrostatic. The code also solves the advection-diffusion of the temperature, the salinity
and any other needed variables. It includes physical phenomena which affect the flow and the
simulated variables : variation of density, Coriolis force, turbulence mixing, wind stress at the
surface, heat exchange with the atmosphere. Variations of the density are taken into account in
the momentum equations via the Boussinesq's approximation.

_ _ _ _ _ _ _ _ _



So the equations to be solved ar a

+u++v +(V+oz

" a-+Ux vepliay axc an )Dnt T s and tazisS
P = Pog (S-z) + g Ap dz

au a v + w -

with

t,x,y,z time and space coordinates VH, Vz eddy viscosity tensor
u,v,w velocity components (spherical and anisotropic)
p pressure
S free surface level KHs, -'zs diffusivity tensor
PO density of reference (spherical and anisotropic)
Ap density variation fu, fv, fs source terms for u, v and s
s salinity, temperature or any (Coriolis force...).

other variable g gravity

2.2 THE TURBULENCE MODELLING

The turbulence mixing is simulated using an eddy viscosity either constant or computed by a
mixing length model or a k-c model

In the the application presented here, a mixing length model is used. Since the turbulence is
affected by density gradients, the mixing length depends on the Richardson number Ri:

Ri = -g -LP( (•a )2

The vertical viscosity and diffusivity read:

Vz 4 f(Ri) ,- 2  JDuý2 -- aV 2  Im: mixing length

f 5(Ri t~J 1~Jfor conistant density

If z-zb < 0.2d Im= K (z - zb) w = 0.41 Karman constant
If z-zb > 0.2d Im = 0.2 x d zb bottom level

d water depth

f and fs are damping functions illustrated on figure I (derived from Soliva, 1982).

I



tU

id ---

•2

01

0.0 0,2 0,4 0,6 0,8 1,0 1,2
Richardson number

Fig. 1 Damping functions related to Richardson number

2.3 THE NUMERICAL SOLUTION

TELEMAC-3D uses recent developments in finite element techniques (Janin et al., 1992). So it
allows local refining of the mesh in parts of interest. The adopted discretization is a finite
element discretization in prisms with vertical quadrangular sides. That way the horizontal 2D
projection of the mesh is made of triangles and the mesh grid can be derived from a two-
dimensional one, easier to generate. Moreover it makes easier the integration of variables over
the water depth required in the numerical method. The vertical coordinate of any point of the
mesh depends in tine on the motion of the free surface.

The equations are solved by means of a decomposition in fractional steps. Each numerical
operator can this way be treated by an adequate method :

- The advection step. It is computed by means of a characteristics curve method with the
classical change of variable called a-transformation.

- The diffusion step. The two main points in that step are the computation of the matrices
and the itsolution of the matrix system. The diffusion and the mass matrices are stored element
by element,.except for the diagonal which is assembled. On vectorial computers such a data
structure allows the vectorisation of matrix vector product. The derived system is solved by
means of a conjugate gradient algorithm, which is well suited to this type of matrix storage
because it requires only matrix-vector products.

- The free surface-continuity-pressure step. By integrating the equations along the vertical
without the advective and diffusive terms, the classical shallow water equations are obtained.
The free surface level is calculated with the two-dimensional model TELEMAC-2D which also
takes advantage of E.B.E. methods (Hervout, 1992). The velocity components are then
deduced.

.A



3. STRATIHFD FLOW IN THE LAGOON OF BERRE

The lagoon of Berre is subjected to increasing environmental concern. A research programme is
conducted in order to determine strategies of pollutant reduction. This presentation only focus
on the modelling of currents and salinity distribution.

The lagoon extends approximately 13 kmn by 17 km and its depth increases regularly from
about 2 m in the North to 9 in in the South. It is connected to the Mediterranean Sea through a
channel in the South-West and it receives fresh water from the River Durance in the North
(fig. 2).

The domain of computation includes the Gulf of Fos on the Mediterranean Sea in order to
simplify the boundaxy counditions. The horizontal mesh grid has 3426 nodes and the size of
the triangles varies from 27 m at the river outlet to 500 m in the Gulf of Fos. The vertical axis is
discretized with 12 prisms. So the 3D mesh grid contains 44538 nodes.

The main phenomena which generate water circulations are the wind, the tidal range at the
linking with the sea, and the discharge of the River Durance regulated by upstream power
stations.

A typical situation was simulated, with a tidal range of 16.0 cm prescribed at the maritime
boundary, a discharge of 190 m3/s at the river outlet and a constant NNW wind of 8.0 m/s.
The salinity of the inflowing waters at the maritime boundary was 38 g/1l and it was 0 g/l at the
river outlet. At the initial time still water was specified with a salinity distribution in the lake of
20 g/l above the level -7.0 m, of 38 g/l under -8.0 m and varying linearly between these two
levels. In the Mediterranean Sea, the initial salinity was homogeneous and equal to 38 g/l. The
velocity field and the salinity were computed for 16 tidal cycles.

At the latest simulated tidal cycle the flow pattern is stabilized. The current ( fig. 3) is mainly
driven by wind stress and river discharge whereas tidal movement have a rather local influence
in the vicinity of the channel of Cawnte.

At the surface the velocity vectors are orientated southwards and the intensities are of about
0.20 m/s. In the lower part of the water body the water flows northwards and the intensities at
the top of the first prism (1/15th of the water depth) are of about 0.10 m/s.

The fresh water at the river outlet is driven towards the surface by buoyancy forces. It
generates a large plume which extends southwards and goes out of the lagoon through the
channel of Caronte (fig. 4). In the lower layer salted water is transfered from the Mediterranean
Sea to the lagoon of Berre and a stratification takes place. The salted deepest water located in
the center of the domain is advected northwards by currents and reaches the surface in the
northern part.

"Tese comnput"ed'rsults- agree with obrservations on the site (fig. 3). Accurate comparison with
measurements are unfortunatly not possible because of lack of extensive data. However the
results enable a good understanding of the circulations and are valuable for water quality
studies.
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4. CONLUSION

The progress of the numerical modelling allows engineers to use such tools in a wide range of
problems. The accurate solution of the free-surface flow equations in a large domain with a
very refined mesh grid in specific areas is now possible with TELEMAC-3D. This is shown
here through the case of the stratified flow in the lagoon of Berm

Of course the numerical technics could be improved yet to have more and more efficient tools,
but the efforts in the future will focus on the physics. Moreover it will be necessary to couple
phenomena in connected domain such as hydrodynamics, sedimentology, biology, chemistry
and water quality.
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Vertical and horizontal structure of a density current in an small lake

E. Roget and J. Colomer
Institut dlEcologia Aquatica and Environmetal Department (Physics). Universitat de Girona

E-17071 GIRONA (Spain)

1.- Introduction

The vertical structure of a gravity current induced by thermal differences between the two lobes
of a small lake (figure 1) and the description of how this current spreads all over the bottom
and embodies the bulk water is presented from temperature data. In Roget et al., 1993 it is
discussed how the different heating between the two lobes is due to their different meart depth
and to the higher underground warm inflow into one of them. Further, also in Roget et al.,
1993, it is shown that at the end of Autumn and at the beginning of Winter, because of this
gravity current, the water in the northern lobe is renovated about every 5 days (that is, every 5
days there is an overturn of the whole lake).

Fg1. SB r o

•• Banyoles. (Sl-S12) indicate undergroundL~e •Fig. I.- Bathymetric map of Lake

"springs. A, Cl, C2, F and E are the
SI 0 locations of the different stations where

data from figures 2, 5 and 7 have been

7$9

T1he effect of the wind over this current is discussed in Roget et al., 1991 and also in Roget et
al., 1993, from real data. Summarising, when the wind blows from the south, the increase in
pressure in the northern lobe intensifies the bottom gravity current which is already flowing
from north to south. On the other hand, if the wind blows from the north so that a surface
circulation from north to south appears, a deeper returning flow coming from the south appears
and cournte.rac the bottom barnoctlnic current. These effects of the wind -" alnso b obserAed
from figure 2(a) where the vertical structure of the gravity current has been presented from
temperature data measured at station C2 (see fg. 1) at 17, 16, 15, 14 13 and 8 m depth, during
the 16th and 17th of Nov. 1991.

First, however, we will briefly comment how in fig.2(a) it is observed that the temperatures
at 8 and 13 metres depth evolve analogously but this is not the case under 15 metres depth
where there is the gravity current. This can be clearly seen, for instance, when after the 8th
hour (day 16) and the 32nd hour (day 1'/) the more superficial layer begins to warm up, but the
temperatures at 15, 16 and 17 in keep on decreasing due to colder water which is horizontally
advected. So, in this case, it can be assumed that at station C2, the thickness of the bottom
current layer is at least 3 metres.

I
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From ig.2(a) it can also be observed that during the aftersoo of either fro the southe 17th,
the temperature of almost all the water column increases. This could be due to convective
mixing because of the cooling of the more superficial layer but, if this was the only reason, the
fact that this increase in temperature is observed to be higher in the deeper part of the watercolumn could not be explained. However looking at figures 2(c & d) it is observed that
during may te the vrica bs r ofo the crnorth and so it forces a retopning current over the
bottom flowing to the north which is slightly colder (becaude it comes from the southern lobe).
The interaction of this returig current and the gravity current already present explains the
increase in temperature infig.2(a). In Roget et al., 1993, it is discussed that such events use
toehappen every afteoon due to the v eu term in the area during this time. The
wind may alter the vertical structure of the current but usually does not stop the gravity currnt
flowing towards the south, although its velocity is observed to decrease.

In figure 2(b) t28 thermal structure of the column at station E (see fig. 1) has also been
represented so that differences between station C2 and E can be evaluated. In fig. 2(a)n the
temperature is represented every two metres because the thermal gradient c t this station is
smaller than at station C2. However the different thermal tendency between the upper and
lower layers is also observed at station E. This is the case in the period between the 34th andthe 40th hour (day 28) when up to 16 m the temperature is decreasing while at the upper layer
it is not. Also, during the 27th, a different thezrmal evolution between the superficial and the
deeper layer is found. Although the difference in temperatur between the currentt and the rest
of .the colu.mn at station E is smaller than at station C2, the thickness of the current is greater.
This fact indicates that this current embodies the quiescent and slighter warmer wa~ter
immediately above. Then as it flows further south, not only the thickness of the gravity current
increases but it flows slower and its temperature is becoming more similar to that of the rest of
the water column in the southern lobe.

2.- Methods

In order to illustrate the spatial variability of this gravity current, some temperature data of an
intensive campaign were taken under no relevant wind conditions. These temperature data,
which are plotted in figures 4, 6 and 8, have been simultaneously recorded by two sensors
with a sensivity of 0.05C, 10 consecutive times at an interval of 4 seconds. All the temperature
values represented have been obtained at ieast 9 times out of 10. If this was not the case or if
the different case was the last, there are no temperature data in the schemes represented in the

_ _



figures which have been mentioned above. However, no data can also mean that the

temperature has not been measured.

In order to know the meteorological conditions during the campaign, data from a
meteorological Aanderaa station placed at 200 m from the west shore of the lake were
available. In figure 3 the wind pattern during the campaign period is summarised. More
precisely, the horizontal line under the x-axis indicates the period when the data presented in
the following were taken. In day 6, for instance, measurements were made from 2 p.m. to
5.p.m., when the wind had a mainly southern component, and so it was favouring the
baroclinic current. However, in this case, as in the other two cases the wind was very gentle.

.4 10 6 Novernbre. 1991 11 Navembr., 1991 4Nvmr,19

360 , - . - • .. - . -,. ! -",.. .

0 6 12 18 24 6 12 18 24 6 12 18 24

tim (hours)
Fig. 3.- Wind conditions daring the days that dam represented in fig.4, 6 and 8 were recorded. More
precisely, the horizontal lines under the x-axis indicates the period when these data were taken.

The location of the stations have been determined by the references of three different points in
the shoreline together with an accurate bathymetric map of the lake (Moreno et al., 1989) and a
Scubapro PDS depthmetre which has an accuracy of 0.5 in and a resolution of 0.1m.

Further, temperature data presented in this article different from those of figs.4, 6 and 8 have
been recorded with Aanderaa TR7 thermistor chains which have an accuracy of 0.05C and a
resolution of 0.03 Finally, an Aanderaa currentmeter RCM7 with a temperature sensor
included was used. This currentmeter has a velocity threshold of 1.4 cm/s and a resolution of
0.1 cmu/s. The characteristics of the temperature sensors are the same as those of the thermistor
chains.

3.- Results

In figures 4 the different locations where temperature data have been taken during the 6th
(4(a)), the 11th (4(b)) and the 14th (4(c)) of November are indicated. Further, around each
location, there is a number of circles. These circles represent the number of times the
thermistors resolution -0.05C- can be divided into the difference in temperature between one
metre above the bottom at that station and the bulk temperature of the southern lobe (which is
warmer). That is, the fact that around the letter D in fig. 4(b) there are 3 circles indicates that, at
that location, the temperature of the water one meter above the bottom is 0. 15C colder than the
characteristic mean temperature of the southern lobe. At the F location, this difference is 0.25C
and, at location L, only 0.05C. So, the representation drawn in these figures allows an idea of
the space distribution of the gravity current. However for a better understanding of its
distributions in the lake, the thermal vertical structure will also be represented for some cases.

From figures 4 and assuming that the number of circles around each station indicates the
strength of the current in this location, it can be stated that the gravity current flows mainly
along the west shore. However next to the east shore, just over the bottom, there is also water
with a temperature corresponding to that of the gravity current. Further, in some locations in
the middle of the plain in the bottom of the southern lobe, there is also colder water. This fact
seems to indicate that although the current is deflected towards the west shore it is widely
spread in the direction where the current is not confined by the shoreline.
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Fig. 4.. Different locations whce temperature data have been taken during (a): the 11th of
Novembre 1991, from 1 p.m. to 5 p.m.; Cb):the 6th of Novembre, from 2 p.m. to 5 p~m.; (c): the
14th of Novembre, from 10 a.m. to 1 p.m.

The existence of this slightly colder water just over the bottom is not due to a boundary layer
effect independent of the gravity current. This can be deduced after finding that the temperx~ure
variations one meter above the bottom at station F (see fig. 1) is hardly correlated with the
temperature variations of the upper layer but with a time shift. In figure 5 (reproduced from
Roget et al., 1993), a shift of about 10 hours can be observedl on looking at the relative minima
of the temperature data serie recorded at 5 m depth in the northern lobe (station A) and at 19 m
depth in the main plain of the southern lobe (station F). From this figure, it is clear that the
gravity current flows through station F: the daily variations observed in the temperature series
are due to the day and night effect and, because at 14 m depth such variations are not observed,
the thermal variations at 1.9 m depth can only be understood if there is water horizontal
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advected from more superficial layers. From the time shift and taking into account the distance
between stations A and F is 1300m a mean velocity of approximately 4 cm/s is deduced. This
value agrees with current data recorded in the neck between the two lobes which will bepresented later.

S17.0 1

165F I z Fig. 5.- Thermal evolution of the lake at
-lob -lao 5 n mdepth in the northern lobe (station A)

-1.l -ua and at 19 m depth in the southern lobe
5.5' . . o" " 5 (station F).

Time (Days from 01-11-89 to 17-11-89)

In figure 6 the isotherms in a vertical plane containing points F, E and D of fig. 4(b) have
been drawn. Because stations F, E and D are located in a place where there is a narrow channel
in the bottom (see fig. 4(b)), the assumption that the thermal profiles represented in fig.6
characterise the thermal structure of the transversal sections containing those points car be
taken. If this is assumed, and considering that from a thermal point of view this current can be
considered to be conservative -that is, diffusivity of heat being non relevant if related to
entrainment- (Altinakar et al., 1990) the amount of entrained water can be calculated from a
heat balance. In this case, from location F to location E it is found that the entrained water into
the current is 20% of the current flow, while from E to D it is 70%. Such a high difference
should be explained by the fact that the flow regime depends strongly on the bottom slope
(Alavian, 1986)

depth

2 "39
3 1634 1.114

4 4 161J
6 1619
7 11

19,at the locations F, E and D indicate in

S•- fig. 4(a).

121

Considering that from continuity, the downtia divergence in mass flux should be equal to a
entrainment constant (dQ/dx=K,), the above percentages of entrained water correspond to
Ke=0.02 m2/s and K,--0.07 m2 /s, respectively. These values are between one and two orders
of magnfitude less than the entrainment constants reported in Hamblin et al., 1978 for a volume
flux which is aldso between 10 and 1030 timecs that of the gravity current in Lake Banyoles.

However, usually, th: entrainment is assumed not to be constant but to scale to the entrainnment
rate, E, in the wkay tthat Ke=Eu where u is the velocity of the current along its path (FEllison et
al., 1959). Then, if this is considered, the non-dimensional entrainment rate ( E0=E(A)- 1/2,

114



where A is the mean transversal area of the current ) for the two cases here considered is found
to be of 3 10-2 and 10-1, respectively. These values are in accordance to the results summarised 1by Alavian, 1986 (fig. 10) when taken into account that the bulk Richardson number -which

accounts the stability of the interface- for the cases considered in fig.6 is Ri - g'cosO/u 2 - 2
(g' being the reduced gravity acceleration and 0 the bottom slope). Also, Hamblin et al., 1987
find entrainment rates of the same order.

, 25.9

S25.8
5 25'7

25.6
2 5.5 ,

r 250" -4 b Fig. 7.- Characteristics of the current
.3 measured at stations Cl during the 6th of

,"-- ý 2 > November, when data presented in the
0 ., . I previous figure were taken.

0 6 12 18 24

Time (hours)

The characteristics of the current measured at 1 metre above the bottom at location C1 (see fig.
1), during the day that data represented in fig. 6 were taken, are repre, +ed in figure 7. After
7 a. m. the current velocity, although very small, begins to increase ti mi's coinciding with
the rise of a wind with southern component (see fig.3). Later on, at about 11 p.m. a sporadic
wind with a northern component causes the velocity to decrease again, but, very soon, the
southern wind reappears and the current velocity increases up to 4 cm/s. In any came, however,
the current is flowing south and has a direction of around 210 degrees which corresponds
mainly with the direction of the bottom channel. This fact makes relevant that the morphometry
of the bottom strongly influences the path of the current.

For the case of this gravity current and despite the small dimensions of the lake, the Rossby
number is evaluated to range between 0.1 and 1. Further, assuming that the Coriolis force
should compensate the centrifugal force, a radius of the orbit between 100 and 1000 m should
be expected (Roget, 1992). These values may allow the Coriolis force to be relevant in addition
to the confining effect of the bottom morphometry. Hamblin and Carmarck (1978) reach
similar conclusions for the case of the incoming Thomson river in the Kamloops Lake (British
ColumbiaEUA). Alavian et al., (1992) refer to this case as an example of the importance of
the Coriolis effect in large lakes (Kamloops Lake is 25 Km large and 2.1 Km narrow)
however, looking at the magnitudes related to river Thomson it is found that its characteristic
dimensions are of the same order of magnitude than those of the gravity current in the Lake
Banyoles (Roget, 1992). That is: river Thomson enters the lake in an area of about 1200 m
wide, has mean velocities of about 10 cm/s and flows towards its right so that after about 1500
m it reaches the shoreline. So, beside the effect of the bottom morphometry, the Coriolis effect
may not be neglected in advance, although its importance is not demonstrate.

In figure 8(a) an schematic analogous to that of fig.6 is drawn from the thermal profiles
measured at locations 0, G and E of fig.4(a). Once more it can be observed that the gravity
curreka deflects towards its right hand. For this case, values of Ke and Eo are respectively of
0.01 m2/s and 0.01. These values have been calculated by linear interpolation in space between
temperature data recorded at 0, G and E.

Another isotherm scheme, now of a transversal area located further south, is represented in
figure 8(b). In this case, at stations J and G, which are nearer the west shore (see fig.4(b))
the baroclinic current is observed at least from 15 m depth to the bottom which, at those
locations, coincides with the main plain of the southern lobe (see fig.4(b)). At stations H and
C, located nearer the eastern shore in an area deeper than the main plain of the southern lobe,



the current is also found over a warmer layer of 16.49C. The existence of this layer is due the
underground water flowing into the source S2 (see fig. 1 and fig.4(b)) which is located in this
zone (Casamnitjana and Roger, 1993). The fact that at location H the colder water is slightly
wanmer than the colder water at C should be explained if it is assumed that the underground
water mixes with that of the gravity current and it is displaced towards the south. This will also
accelerate the renovation time of the water in the hole where source S2 is located.
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to affect the temperature of the whole column of water when it is mixed but near the eastern
shore it is not.

The presence of the baroclinic current in the hole of source S2 can also be observed from
figure 8(c) (see also fig. 4(c)). Data represented in this figure have been collected 8 days
later than those in fig.8(b) , and then the warmer layer under the current is not observed
anymore. In fig.8(c), as in fig.8(b), the fact that the baroclinic current is more important along
the western shore than to the eastern is also observed. Further, from the inclination of the
isotherms, a transverse advection from west to east can be deduced, if it is not counteracted by
other factors.

4.- Conclusions

- Entrainment constants of order 10-2 m2/s corresponding to volume fluxes of about 10 m3/s
and non-dimensional entrainment rates of order 10-2 have been found for a gravity current
continuously fed by density differences due to differential heating (Ri-2).
- The slope of the bottom is found to greatly affect the entrainment so that a variation of the
slope from 0 to 3% implies that the entrained water into the current varies from 20% to 70% of
the current flow.
- The current is deflected towards its right-hand (being confined along the western shoreline)
but it widely spreads in the opposite direction so that, although mean gradients of up to 2 10-4
degrees/m are found in the transverse area of the current, the gravity current can still be
identified along the east coast from temperature data.
- The deflection of the current is obviously due to the effect of the bottom morphometry but
Coriolis effect may not be neglected in advance, although its importance has not been
demonstrate.
- As the density current is not homogenously distributed along the transverse area of the lake,
vertical mixing will create horizontal gradients in the upper pakt of the water column and so
transversal transport should be expected at any depth.
- The •ind not only affects the distribution in the space of the current but it also modifies its
vertical structure.
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Turbulence and Mixing at Density Interfaces

H.J.S. Fernando
Environmental Fluid Dynamics Program

Department of Mechanical & Aeropace Engineering
Arizona State University, Tempe, AZ 85287.6106

Abstract

Density interfaces that coexist with contiguous turbulent layers are ubiquitous in natture,
and turbulent mixing across them plays a major role in the dynamics of environmental flows. In
nature, density interfaces are formed by the buoyancy forcing on turbulent fluids and they can be
destroyed by turbulence itself when such forcing is absent. Mass and momentum transfer across
stratified interfaces are much weaker, and often they control heat and mass balances in the
atmosphere and oceans; here the rate limiting step is the rate of mixing across interfaces. In this
paper, a brief review of turbulence and mixing in density stratified fluids is presented, paying
particular attention to interfacial mixing. Some new results pertinent to turbulence and mixing in
stratified fluids are also presented.

1. Introduction

Density stratification and turbulence are ubiquitous features in natural environments.
Furthermore, they often exist together. Turbulent flows, while difficult to predict for
homogeneous incompressible fluids, are vastly more complicated in the presence of
stratification. Nevertheless, they must be dealt with in geophysical and industrial flow modeling.
As a result, there is a continued interest in understanding and modeling of the interaction
between stratification and turbulence. Some common examples of naturally occurring stratified
turbulent flows are (i) the upper ocean mixed layer, which is located above the thermocliue and
driven by the wind stress (the atmospheric counterpart is the planetary boundary layer topped by
the inversion layer), (ii) turbulence in the main oceanic thermocline, which is believed to be
caused by mechanisms such as Kelvin Hehnholtz instabilities, internal-wave breaking or critical-
layer absorption, (iii) oceanic boundary turbulence induced by the tides or the reflection of
internal/inertial waves at the continental margins, and (iv) the oceanic benthic boundary layer.
These turbulent flows play a pivotal role in navigation, human and other biological activities,
pollutant and nutrient distribution in the ocean, long-range aerosol and other green house-gas
transport in the atmosphere and the evolution of climate systems.

One of the important practical applications of small-scale mixing parameterizations of
stratified turbulent flows is the development of atmospheric and oceanic general circulation
models (GCM's), including atmosphere-ocean coupling. State of the art oceanic GCM's have a
resolution of a few tens of kilometers; scales that are smaller than this, which include turbulence,
need to be parameterized properly based on the dynamics of stratified turbulence. Currently, to
obtain realistic predictions, oceanic GCM's employ an eddy diffusivity of the order 1 cm 2s"
(Bryan 1987) but the measurements of the microstructure community indicate a value of the
order 0.1 cm 2s-t (Ledwell 1994); the reason for this discrepancy is a subject that is in the heart of
oceanic microstructure research. In current weather forecasting models (e.g., the European
Center for Medium Range Weather Forecasting, ECMWF), the vertical resolution is of the order
of a few hundred meters, and the mixing at the inversion layer is parameterized by assuming a
uniform entrainment rate w-ross the interface, irrespective of the local conditions (their earlier
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models did not consider entrainment, and performed poorly!). Perhaps, an improved
parameterization based on governing variables may improve the predictive capabilities.

This paper reviews some salient developments in stratified turbulence research, paying
particular attention to interfacial phenomena such as mixing across density interfaces. Some new
results pertinent to stratified turbulent flows will also be presented. Section 2 is devoted to the
fundamentals of stratified turbulence and Section 3 deals with mixing across shear-free density
interfaces. Sheared density interfaces are discussed in Section 4.

2. Turbulence in Stratified Fluids

Perhaps due to the difficulty of the subject matter, the number of studies reported in the
open literature on the dynamics of stratified turbulent flows is much less than that for classical
engineering turbulent flows. A key feature of stratified turbulence is the suppression of vertical
diffusion beyond a limiting vertical length scale, at which buoyancy effects become important
(Richardson 1920; Pearson et al. 1983). Beyond this scale, different scales of the flow evolve
differently (Riley et al. 1981; Lienhard & Van Atta 1990; Holt et al. 1992). In the early days of
turbulence research, the effects of stratification on turbulent motions have been studied by
meteorologists such as Richardson (1920) and Taylor (1931), who also identified the key non-
dimensional parameter, now known as the Richardson number, that governs stratified turbulence.
Interest in this subject was renewed in the 1960's with the identification of a vertical length scale,
beyond which the turbulent diffusion is inhibited; this scale was independently derived by
Dougherty (1961) and Ozmidov (1965), in the atmospheric and oceanic context, respectively, as
LR = (WN3)1/2, where e is the rate of dissipation of turbulent kinetic energy (TKE) and N is the
background buoyancy frequency. With the rapid improvement of measurement techniques for
turbulence, the necessity of presenting oceanic and atmospheric data on a solid theoretical
framework was realized. To this end, Gibson (1980) proposed a theory based on scaling
arguments to explain the evolution of oceanic turbulence; somewhat similar concepts were
advanced earlier by Long (1978) in the context of turbulence in stratified fluids. Gibson (1980)
assumed that oceanic turbulence is sporadically generated by powerful events (Caldwell (1983)
referred to this as the Big-Bang hypothesis) as turbulent patches, which grow by entraining fluid
from the surroundings. The total energy within the patch was assumed to be constant; from this
assumption, the r.m.s. vertical velocity w was calculated. During the growth of the patches, the
vertical inertial forces of the eddies w2/L, where L is the integral length scale and w is the r.m.s
vertical velocity of turbulence, decrease and the buoyancy forces against which the eddies must
overturn N2L increase. Since the patch cannot grow beyond a scale which is determined by a
balance between these two forces, the limiting vertical lengthscale should be given by Lb = w/N.
Thus the stratification begins to play a key role when the turbulent Froude number Frt = u/NL is
of order one, where u (- w) is the r.m.s. horizontal velocity (Ivey & Imberger 1991; Taylor
1992). Assuming high Reynolds-number turbulence within the patch, which yields e = w3/L, Lb

-.2112

at this limiting height can be evaluated as Lb - LR w (W.N' 1- , where LR and Lib are called
Ozmidov and buoyancy lengthscales, respectively. Thus, if the size of the turbulent patch is Lp
(- L), then, during the initial growth, Lp << LR or Lb, but as the turbulence evolves and buoyancy
effects set in, all three length scales become of the same order.

Three more length scales are often used; they are the overturning length scale, defined as
Lo = b/N2 , where b is the r.m.s. buoyancy fluctuation of turbulence, the Thorpe length scale LT
and the maximum Thorpe displacement Lrm. The former was introduced by Ellison (1962), and
was later modified by Stillinger et al. (1983) and Gargett et al. (1984) (so in some cases a
numerical factor is used in front of it). The latter was introduced by Thorpe (1977) to facilitate
the interpretation of oceanic microstructure data, which often consist of a single vertical cut of
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temperature/salinity through the ocean. If turbulence is present (this is sometimes wrongfully
inferred by the presence of inversions in the vertical profile), the individual density values of the
profile are rearranged to obtain a stable density profile; the displacements required are called
Thorpe displacements di, and both the maximum (LTm) and the r.m.s (LT) values of di's are used
as measures (Dillon 1982, 1984).

Using a laboratory experiment, Fernando (1988) investigated the growth of a
continuously forced turbulent patch in a stratified fluid. It was found that the growth of the patch
is inhibited at a critical vertical thickness after a time of Ntc - 4. Thereafter, the formation of a
strong density gradient layer, at the edges of the patch, which supported a field of internal gravity
waves forced by the patch turbulence, was observed. Later studies (DeSilva & Fernando 1992)
indicated that the destruction of the stratification within the patch is relatively slow, and is
completed only after a time of the order Nt - 100; thereafter, the patch grows slowly (beyond the
Ozmidov scale) due to the breaking of waves in the gradient layer at the edges.

Gibson (1980-1993), in a series of papers, extended the big-bang idea to interpret oceanic
microstructure. His theory appears to be sound in a fluid dynamical sense, but its applicability to
the ocean has been repeatedly questioned by the microstructure community. The theory assumes
that, after the patch grows to LR , eddies of the size of the integral scale cannot overturn against
the stratification; turbulence is now said to be fossilized (following its first usage by Woods
(1969)). The term "fossil turbulence" has also been used by Nasmyth (1970) to describe the
temperature microstructure field that is left behind after the decay of oceanic turbulence, but the
necessity of velocity fluctuations for the existence of temperature fluctuations is recognized in
Gibson's theory. Eddies of size smaller than the integral scale can overturn and mix the fluid
within the patches, with the largest overturn being of the order LR. When LR becomes of the
same order as the Kolmogorov length scale LK, the turbulence ceases to exist, and the flow is

said to be completely fossilized; it was shown that this occurs whcn the parameter G = ON,
where v is the kinematic viscosity, falls below a critical value G. More precisely, Gibson's
theory predicts that the scales larger than 1.2LR are non turbulent, and the scales 1.2 LR > 0 >
15LK, are actively mixing. When 1.2LR - 15 LK, the turbulence is completely fossilized at all
scales. Laboratory experiments show that G,1 can vary from about 8 to 25, with Gibson's (1980)
prediction being 30. Further, this theory predicted the spectra for velocity and microstructure
fields, based on the evolution of a single patch.

In oceanic measurements, only a single cut through a turbulent patch is possible and
obtaining information on the state of the patch is an onerous task. Fossil turbulence theory
assumes that the maximum Thorpe scale Lrm represents the size of a growing patch, and if the
patch is in the fossilization stage, LTm is a measure of the patch size at the onset of fossilization
(i.e., maximum Thorpe scale does not collapse or change for long times). If so, the rate of
dissipation at the onset of fossilization co can bc calculated using the measured LTm at any time
ase 0 - N3L3, ; if the dissipation i t this time is , tb ...... o . .a r, .usig

the "turbulence activity parameter" A = (e/eo)1/2. By invoking experimental constants, A can
also be written as eo = 13DCoN2 = 16.5 N3 OT., where D is the molecular diffusivity and Co is
the Cox number. Based on such estimates, which can conveniently be depicted on so-called
hydrodynamic phase diagrams, Gibson (1987, 1991) concluded that the oceanic microstructure is
heavily undersampled, and at the time of the observations, most of the patches are in a fossilized
state.

To investigate some of the modeling outlined above, a series of laboratory experiments
was carried out at Arizona State University to study the evolution of stratified turbulence. The
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experiments were performed in a 12.2m x 0.4m x 0.3m towing tank, with salt stratification. The
towed bodies included monoplanar grids, spheres and cylinders; turbulence within the wakes of
these bodies was investigated to identify the properties of stratified turbulence. Some salient
results of these studies are summarized below.

Figure 1 shows the dispersion of a blob of passive scalar that was released in the wake of
a grid; note the initial spreading of the blob in all directions, as in a homogeneous fluid, but its
growth is arrested at a time 2 < Nt < 13 (exactly at Nt - 4), whence the formation of a layered
structure signified by horizontal intrusive motions can be seen. Particle-tracking velocimetry
clearly indicated initial three-dimensional (3-D) motions and the formation of 2-D striations in
the far wake representing the final stage of turbulence decay (Pearson & Linden 1983). Figure 2
shows a lengthscale diagram constructed using the measurements in a stratified cylinder wake;
the scales were selected in concurrence with Gibson's model. Note the initial decay of LR, the
gradual growth of LK, the onset of buoyancy effects when 1.2 LR - LTin at Nt - 1.5, and the
complete fossilization when 1.2LR - 15LK at Nt - 6. The results clearly show that, if there is no
external energy source, turbulence in stratified fluids is short lived and decays rapidly leaving
behind internal wave motions; the persistence of Lb beyond 15LK -1.2 LR illustrates that,
although turbulence is absent, internal wave motions can persist in the far wake (Figure 3).

Another important aspect is the decay of the Thorpe scale and the maximum Thorpe
displacement; see Figure 4 pertinent to the wakes of spheres. For this case, LT (and also LTni)
cannot remain constant, and it decays because of the settling of heavy fluid elements that were
displaced during the active phase of turbulence. When settling to their equilibrium positions,
these particles tend to migrate under the inertia-viscous balance, while being affected by the
molecular diffusion and exchanges with the environment. Sometimes, these settling motions can
become turbulent, and the resulting flow it. called "zombie turbulence." Getz & Yamazaki
(1993) argued that the migratory motion of buoyant particles, after the decay of turbulence,
should be characterized by the stratification number St - (Lbo/b')/(dbR/dz), where bV and Lir
are the initial r.m.s. buoyancy fluctuation and the integral temperature lengthscale, respectively,
and dbR/dz represents the background stratification. Turbulent motions are said to be initiated
when St < 1, although one might expect that they should also be dependent on the molecular-
diffusive parameters. In all, it appears that LTm may not be a good indicator of stratified
turbulence at the onset of fossilization. According to C.1L Gibson (private communication), the
relaxation time of LTm can be a function of the Reynolds number and in high Reynolds-number
oceanic environments LTrn may persist for long times; this assertion remains to be tested.

As mentioned, the microstructure community has taken a different view on oceanic
turbulence. They assume that oceanic turbulence is more persistent than what Gibson's theory
predicts (Caldwell (1983) refers to this as the "Continuous Creation" view point). The isolated
turbulent regions in the ocean are thought to be in equilibrium with the "environmental" energy
sources such as mean velocity shear (Dillon 1982; CaldweU 1983; Crawford 1986; Dillon et al.
1989) or the near-inertial wave shear (Gregg 1984, 1987), thus maintaining active turbulence- for
example, an isolated patch that is in an active state has been recently detected by Hebert et al.
(1992) during measurements in the Pacific Equatorial Undercurrent. Dillon (1982) reported that
oceanic patches obey the empirical relationship LR - 0.8Lr, except when they are in the surface
mixed layer (according to Taylor (1992), this corresponds to Frt = 0.86). Gibson (1991)
interpreted these patches as fossils, although others have argued to the contrary. Crawford
(1986) and Imberger & Ivey (1991) have also reported cases for which the above correlatian was
satisfied. According to DeSilva & Fernando (1992), such a correlation is valid only when the
patches are well mixed due to sustained agitation.
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Figure 1. The dispersion of a passive scalar (a blob of dye) in the turbulent wake of a grid
towed in a stratified fluid (grid speed U = 29 cm/s, N= 1.15 rad/s and mesh size M
=4.7 cm). The blob was injected horizontally with a very slow speed.
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Figure 3: The evolution of the overturning lengthscale (normalized by the mesh size M)
with the non-dimensional time in the wake behind a towed grid in a stratified

fluid. The Reynolds number is defined as Re = UM/v, where U is the tow
velocity.
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Vertical diffusion of fluid particles that are released from a steady source in a stably
stratified fluid is also of interest (Csanady 1964). If the stratification is absent and the turbulence
is homogeneous, then the particles will disperse according to the theory of Taylor (1921); i.e., the
mean square displacement ýi after a time t from the release is given by (Pearson et al. 1983)

42 - 2;7 TOt_ R,.xd 1

where TL = (t)dr] is the Lagrangian integral timescale, W2 =w 2 is the mean square

velocity and Rw) = W(t)W(t +%') is the Lagrangian autocorrelation function. As t - and

TL * 0, (1) becomes W2  TLt, as if it is governed by the diffusion equation with diffusivity

w2TL; for short time intervals, 1-( '7)t , and the r.m.s. displacement is expected to grow
linearly with time. For stratified turbulence, (1) is valid only for short time periods, before the
stable stratification comes into play. Figure 5 shows the r.m.s. particle displacement behind a
towed grid, measured by tracking the displacement of neutrally buoyant particles. The r.m.s.

displacement appears to follow (ý1)1t2 - t, until Nt - 0(1), and then levels off because of the
suppression of turbulence by the stratification.

Not many studies have been devoted to investigate the role of molecular-diffusive effects
in stratified turbulent mixing. Previous wind and water tunnel experiments as well as direct
numerical simulations show that such effects, signified by the Prandtl number Pr (or, more
generally, Schmidt number Sc), play a role in the evolution of stratified turbulent flows because
of their dominant role in small-scale mixing and homogenization (Lienhardt & Van Atta 1990;
Holt et al. 1992). Consider a turbulent flow with r.m.s. velocity u and integral lengthscale L. A
scalar inhomogeneity generated at the scale L will be broken down along the hierarchy of scales
via non-linear processes, while ultimately reaching the molecular mixing stage. If Sc > 1, then
the non-linear processes are terminated at the Kolmogorov scale LK = (v3/E)l/4, and thereafter
the inhomogeneities are disintegrated by the straining motions of Kolmogorov eddies. The time
scale tk for the scalar to bieakdown to LK can be evaluated by noting that the transfer rate of
scalar fluctuations at any wave number k in the inertial sub-range is given by (Broadwell &
Breidenthal 1982)

dk fk)~(E)' (2)
dt

or

Jdk / k 5 3 .. 113 fdt. (3)

2c/L 0

where f is a function. Thus tk - L/u, indicating that the scalar flux reaches LK in a time scale of
the order of the eddy turn-over scale. Thereafter, the breakdown of inhomogeneities is
performed by the straining motions of the Kolmogorov eddies, and the final homogenization

takes place at the Batchelor scale L, = (D2v / e)"". The change of scales (wave numbers) by
such straining motions can be written as (Townsend 1976)
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dk.= -U1 4
dt - -(

where aUt,/x, is the velocity gradient; for the case of wave-number distortions by simple
elongationallcompressional motions due to Kolmogorov eddies, (4) can be written as

Sk. (5)

Thus, the scalar should break down form Lk to LB during the time period

"1 - ) n(SCI/2) ( f. ) £n(Sc). (6)

r u -Re-'n(Sc), (7)L

where Re=uL/v. The total time required to complete molecular-scale mixing can be written as

tu=:L +oL2 Re" 2 en(Sc), (8)
L

where aI1 and a2 are constants. From (8), it is clear that the molecular-diffusive effects should
play only a secondary role at high Re. In the case of low-Reynolds number flows, the Sc effects
should come into play especially when Re drop to values of the order of [(cX/tX2 ,n(Sc) -2; such
low Reynolds numbers are not uncommon in laboratory situations.

Because of the low mixing rates of large Sc flows at low Re, decaying turbulence in salt
stratified fluids (Pr - 1000) may produce positive buoyancy fluxes. If turbulence is introduced to
a stratified fluid, initially the flow behaves as if there is no stratification; the fossilization starts at
the scale LR, whence the turbulence begins to decay rapidly. If most of the molecular mixing has
not taken place during the initial growth phase, the ensuing fossilized flow will contain unmixed
fluid parcels, which may migrate to their equilibrium positions while producing "zombie
turbulence" at times. It is interesting to note that laboratory wind tunnel experiments with heat
stratification does not produce restratificdtion, which can be attributed to the low Sc or Pr of air

3, Turbulent Mixing Across Shear Free Density Interfaces*

A large number of studies, both experimental and phenomenological modeling, have been
carried out to investigate turbulent mixing across shear-free density interfaces, and a review of
pertinent work is given in Fenmando (1991). These studies have been motivated by geophysical
applications such as the growth of atmospheric day-time convective boundary layer as well as
oceanic nocturnal boundary layer in which turbulent motions are driven by buoyancy forcing. A
typical configuration of interest is shown in Figure 6; here a thick three-layer fluid system with
an inversion layer of thickness h is depicted, across which the density jump is Ap (equivalent to a

SThis work was perfo'ned in collaboration with Professor J.C.R. Hunt of the U.K. Meteoio!ogical Office.
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buoyancy jump of Ab). The turbulence away from the interface has integral length and velocity
scales of LH and uH, respectively. The configuration shown here is common in the atmosphere
(when the diagram is read upside down!), where during the day-time evolution of the convective
boundary layer a three layer system, with a bottom convective turbulent layer that is topped by a
wave-bearing inversion layer in which the buoyancy frequency is N2 is present; Ebove that is a
deep layer with a weaker stratification, for which the buoyancy frequency is N 3 (<N 2).
Sometimes the stratification in the outer layer is absent and region (3) is either turbulent (double-
sided stirring of the interface) or consiots of irrotational motions (single-sided stirring). If h is
considered as an independent variable, then the problem can be described by the following three
parameters.

RI= AbLH (Richardson number)
"Ah

Ri(i)= ILbh = N h 2 uJ (Internal Richardson number) (9)

e N3 / N2 (frequency ratio) or Ri(3 ) = N3
2LI1 /1:i4

homogeneous density
region 1 turbulence probep(z)

LH

UH Pl

• -" totdturbulence

region 2 h I
breaking internalwaves ........ A

region 3 internal waves or turbulence N3

Figure 6. A schematic diagram of a density interface that coexists with an adjacent turbulent
region (1) and a weekly stratified layer (region 3).

This flow configuration has been investigated by Carruthers & Hunt (1994) using a
fomial theoretical analysis. Accordingly, the nature of the interfacial motions are governed by
the internai Richardson number Ri(1). If Ri(g) < n2, then the interfacial motions consist of the first
mode of internal waves (called the flapping mode); this is typical of laboratory situations that
have thin interfaces. For the case of Ri(g) > 7t2 , many wave modes are possible and when N 2hluH
< nit, where n is an integer, there exist, at most n solutions, the number decreasing with
increasing N 3(< N2). Since the interfacial structure changes with the number of available internal
wave modes, transitions between different entrainment regimes can be expected with the change
of 140)
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A theoretical analysis can be performed to investigate the nature of the internal wave field
of an interface, that is forced by a contiguous turbulent layer, this enables one to calculate the
energy absorption into the interface from the turbulent layer. Such calculations are important,
because the absorbed energy is key to the estimation of mixing rates. The technique devised by
Hunt (1984) has been used by Carruthers & Hunt (1986, 1994) and Fernando & Hunt (1994) for
the analysis of a wave field coexisting with a turbulent layer. In this approach, it is assumed that
turbulence near an interface can be described by the superposition of a homogeneous turbulence
field uR and a distorted field /D. The homogeneous field is represented by four-dimensional
Fourier transforms,

luI(t) = Jjf~'J iR(ý,c)e'fkPý;-)dkd~ , (10)

where k = (kI, k2, k3 ) is the wave number, oD is the frequency, the Fourier coefficients satisfy the
relation

SY *(kl,k 2,k3,o )SjSi'(kl,k 2,k 3' w) = X- (kik,k 3" ,w) Ok3 - k ), (11)

and Y is the four-dimensional wave-number-frequency spectrum, i.e.,

ZP(L) (12)
taxr

The distorted field can be shown to be irrotational, and hence can be represented as
'Ixt)- V 4, where 0 is the velocity potential which is governed by V2 4. 0; see Hunt (1984)

for a justification of this assumption. The interfacial wave motions are assumed to be governed
by the internal wave equations,

2 (V2w) + N2 (V2W) =0 (13)

and

d 2w + N w=-2-ia p (14)
dt2 po dzdt"

where N = N2 for 0 < z < h, N = N 3 for h > z, w and p are vertical velocity and pressure

perturbation, respectively, and V2 = 02 / e.2 + 02 / Y2. Assuming that the turbulence and
wave motions are statistically stationary and w and the other components of velocity (ui) can be
expressed as a Fourier transform in horizontal wave numbers and frequency as

w(Xyzt)=fJJ +% , , (k dkdkdw, (15)
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it is possible to write (13), for the region (2), as

d2i +-(N2 - o 2)dz2  c.02  /k • --O, (16)

where 4 2 = 4 + 9.

The turbulent and wave fields are matched at the interfacial boundaries by using the
kinematic condition and the continuity of pressure. The solutions of the resulting equations can
be obtained in the form of

"iX1)= -UJfi (kl,k2,z, w ) e ,(ix+kY.-, )dkdk2do, (17a)

x,r) = JJ(ký,k-2,z., )ei(k1x+k2y- ),dkdkdc, (17b)

if the interfacial motions are stationary. If the flow is considered to be unsteady (e.g., in the
presence of growing waves), (16) needs to be modified and solutions of the form

-_

i = if • (kl,k2,z," )ei (klx + AZY ) dkldk2, (18b)

should be sought. Note that the steady solutions cannot extract energy, and hence unsteady
solutions have to be used for energy calculations. To close the equations, an expression is
required for the four-dimensional spectra, and it is usually modeled in the form (Carruthers &
Hunt 1986)

HH
w)i C io (k)l6(j)I uu), (19)

where W ij (k) is the three-dimensional spectral tensor, and it is assumied tihat the main cause of
time variation of velocity at a given point in a frame of reference moving with the mean flow is
the random advection of fluid elements by the energy containhig eddies with velocity and length
scales uji and Ljj, respectively. Thus this spectral form is valid only for frequencies co > UHILH.
A more exact model of the random advection changes this equation, but not significan:ly the
results for waves at the interface.

12



The r.m.s. velocities and wave amplitude can be calculated using steady solutions and the
unsteady solutions can be used to calculate the energy flux into the interface. Of course, certain
problems arise in such calculations because of the presence of growing resonant wave modes
within the interface. These waves grow, break, and dissipate energy - an aspect not readily
amenable to theoretical treatment or direct numerical simulation. Some modeling ought to be
invoked to circumvent this difficulty. For example, Carruthers & Hunt (1994) considered the
case where the density interface is thick (h - LH), and introduced Rayleigh friction to artificially
remove energy from growing resonant modes; they adjusted the Rayleigh damping coefficient so
that the r.m.s. wave slope is maintained at a threshold just enough to initiate breaking.
Alternatively, Fernando & Hunt (1994) employed a simpler closure hypothesis, in which they
assumed that breaking waves produce discontinuities in isopycnal contours; the mathematical
requirement that contours with discontinuities should lead to k-2 spectrum in the wave number
space and co- 2 in the frequency space renders the velocity spectrum flat in the wave-breaking
regime. The vertical velocity spectrum of Fernando & Hunt (1994) consisted of a linear part, for
which the solution is known, and a non-linear part, for which the spectrum is flat based on the
above argument. The energy was assumed to be equi-partitioned among linear and non-linear
regimes because an imbalance would cause the energy to redistribute either by growing waves or
by non-linear transfer processes. A model based on above concepts was developed for the case
Ri < =2 , and satisfactory predictions for the r.mr.s. wave amplitude and velocity were obtained
(Figure 7).

The unsteady calculations for the case where Ri(g) < X2 , Ri(3) = 0 and the bottom layer
consists of irrotational motions, show that the flux of energy absorbed into the interface (P) is
given by

g h g37C2
P=gRi", where g= "- 241 (20)

If it is assumed that the breaking of waves acts as a sink to this energy, so that a part of

the energy is dissipated (with the rate of dissipation e) and the rest is used to sustain the

buoyancy flux (q), with a mixing efficiency of q/(q+E) = 0.25 (McEwan 1983), then it is possible

to estimate the entrainment rate Eb for the single-sided stirring case as

Eb =--=0.19 RFi.7. (21)
UH

where Eb is the entrainment coefficient. This prediction is in good agreement with the
measurements. of Nokos (19080, who found that Eh = 0.15 Ri -1.21. it should be noted that the
above entrainment law may not be valid for thick interfaces with Ri(1) > 7t0. In such cases the
amount of energy absorbed into the interface as well as interfacial energetics are different;
further, the resonant modes grow faster, thus allowing less time for mixing (Carruthers & Hunt
1994). Laboratory experiments performed with thick interfaces indeed show significantly lower
entrainment rates than that of thin interfaces with same Ri (Figure 8); and a comprehensive
theoretical treatment on this discrepancy is yet to be reported.
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Figure 7: A comparison of the predicted (solid line) normalized r.m.s. vertical velocity
w/uH variation with Ri with the experimental results (solid symbols) of Hannoun
& List (1988).

- 0.47

'-0.00
•" €•'•• •"- 0.72

"I2.

•Ri o

Figure 8: A comparison between the entrainment coefficient versus Ri data for the thin-

interface case (solid line) with a thick-interface case (symbols); the results are
from E & Hopfinger (1986) and Perera et al. (1994), respectively.

114

=aA___________ 3 ' 6 78 '
R°_



4. Mixing In Stratified Shear Flows

The flow configuration shown in Figure 6 does not incorporate velocity shear that may
present across the interface, and hence it represents a simple flow configuration with somewhat
limited applications. However, most of the natural density interfaces are subjected to velocity
shear, and hence the class of problems that deal with sheared interf•ces is of prime interest. A
typical example is the upper ocean mixed layer, which is driven by wind forcing and generates
strong velocity shear at the base of the mixed layer. The interface is now subjected to the
turbulence of the mixed layer as well as to the turbulence that is generated locally by the shear
instabilities of the stratified layer. Theory (e.g., Miles 1984), laboratory experiments (Rohr &
Van Atta 1987) and field observations (Nieuwstadt 1984) show that the turbulence in the
stratified layer is generated when the local gradient Richardson number N2l(dtU/dz9, where
(dU/dz) is the local mean velocity gradient, drops below a critical value of the order of 0.2 - 0.3.
Thus the entrainment of non-turbulent fluid from the interface into the turbulent layer is expected
to occur either by the engulfment of fluid by the mixed-layer eddies (this mechanism can also be
present for the shear-free case) and by the shear instabilities of the interface. These two
mechanisms are discussed below in detail.

(a) Eddy engulfment mechanism

Consider the flow configuration shown in Figure 9, where a turbulent mixed layer is
driven over a stratified interface. Eddies of various space time scales slosh over the interface and
may penetrate and scour non-turbulent dense fluid from it. If these eddies penetrate a distance 8
and scour fluid particles of the same size, then the buoyancy associated with a lifted particle is

Ab, -Ab- (22)h

If the size of an inertial-subrange eddy involved in this process is 1, then its vertical -veiocity can
be written in terms of the r.m.s. velocity and the integral lengthscale Li as

We U1 ..5L(4-) . (23)

If these eddies are capable of carrying scoured fluid particles into the mixed layer, then the
resident time ER of the fluid particles before they fall back on the interface can be evaluated as

t• __~t_.(24)
Ab P

Further, it is possible to write

52 L (25)

Note that the maximum penetration and hence the entrainment, occurs due to the energy
containing (integral-scale) eddies. Combining (23), (24) and (25), the resident time of scoured
particles can be written as

I
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Figure 9: A simplified diagram of an entraining stratified fluid with interfacial shear, drawn
on the basis of the experimental observations (Nanimousa & Fernando 1987). The
mixed layer is fully turbulent and the shear layer (thickness 8,) extends above the
entrainment interface. Beneath it is the viscous momentum diffusive layer
(thickness 8J) that usually extends below the density interfacial layer.
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Figure 10: The dependence of the amount of molecular mixing in a shear layer on the
Reynolds numbers based on the visual shear layer thickness (8,) and the vorticity
thickness (Sv). AU is the velocity jump across the layer, and S. is the product
thickness defined in Koochesfahani & Dimotakis (1986) from which this figure is
adopted. The solid line represents the gaseous mixing layer results of Konrad
(1976). The measurements of Breidenthal (1981) are also shown by solid
symbols.
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ti h .1 (26)
kAbJ

which is the buoyancy time scale of the interface. While heavy fluid particles are in the mixed
layer, they are broken down by eddies of different sizes and may ultimately homogenize (or
mixed) with the turbulent layer thus completing the entrainment process. Based on the
arguments presented in Section 2, it is clear that this mixing is completed within a time scale of
the order e/we; hence for the entrained fluid to mix molecularly before falling back on the
interface, the following condition should be satisfied;

> >-- (27)

or L > )4/3 Ri. (28)

Since h/LH is generally small (Stephenson & Fernando, 1991), it is clear that only small eddies
can contribute to the scouring process (dense fluid particles associated with larger eddies simply
fall back on the interface). However, the depths of fluid 8 entrained by such eddies are
negligible so as their entrainment abilities. Thus, much faster mechanisms such as resonant
growth of waves and shear instabilities arc expected to play the dominant role in mixing across
interfaces, especially at high Richardson numbers.

(b) Shear Instabtles

It appears that at moderate and high Richardson numbers interfacial mixing is caused by
local shear instabilities. Depending on interfacial conditions, these instabilities may appear in
different forms, for example, Kelvin-Helmholtz (K-H) billows, Holmboe instabilities and
growing interfacial waves; see Fernando (1991). Shear-layer instabilities without stratification
have been studied extensively, particularly by the Caltech Aeronautics group (e.g., Konrad 1976;
Breidenthal 1981; Mungel & Dinotakis 1984; Koochesfahani & Dimotakis 1986). Their results
have delineated very useful information on entrainment and molecular mixing that occur during
the roll up of the shear layer.

Experiments on large Reynolds-numbex shear layers show that the mixing processes are
dominated by the dynamics of large-scale voitical structures. Initial entrainment of one fluid to
another leads to the appearance of markedly different concentrations in the center of the shear
layer. Of course, such inhomogeneities should disappear as mixing proceeds, but the
observations indicate that molecular-mixing time scales should be given due regard in
entrainment studies. Another noteworthy observation is the existence of a mixing transition; i.e.,
the increase of molecularly-mixed products by a significant factor beyond a certain Reynolds
number (Figure 10). The mixing rates thereafter do not seem to depend on the Reynolds number,
and the tendency for molecular mixing in gases is clearly higher than that in liquids; the
differences of Schmidt number have been attributed to this disparity. Does this mean, for
example, that mixing characteristics in oceans differ from that of the atmosphere? Data from
very high Reynolds number cases are required to addirss such questions. Preliminary studies
indicate that gaseous and liquid mixing curves merge with each other at large Reynolds numbers
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"The nature of instabilities in stably stratified shear layers is different from nonstratified
cases. In the former, the instabilities (usually the K-H type) are possible only when the local
gradient Richardson number Rig drops below a critical value, and this local value can be much
smaller than that is based on bulk parameters. For example, if the shear-layer thickness is S, and

the interfacial-layer thickness is h, then, based on bulk parameters, Ri3, (Ab8,/AU 2)(8,/h),

where AU is the velocity jump across the shear layer; if 8, - h, Rig mAb8,/AU 2 . Although the
bulk Rig is large in most practical situations, its local value often falls below the critical value of
R!gc necessary for instabilities because of the straining of the interface by the internal wave field.
The experimental results of DeSilva Ct al. (1994) clearly show the possibility of small local Rig
values for high overall gradient Richardson number situations. Observations that have been
made in lakes (Spigel et al. 1986), oceans (Hebert et al. 1992) and in the atmosphere (Nappo
1991) indicate that the appearances of K-H instabilities are rather sporadic and are possibly
controlled by a critical Rig criterion. When 8, is small, Rig tends to be small and K-1H billows
may appear; consequent mixing causes 8, to increase while increasing Rig; mixing is ceased
when Rig increases beyond a critical value (which is of the order of 0.3; see Thorpe (1987) for a
review). If background turbulence is pxesent, this thickened interface can be eroded thus
decreasing 8, again. By this way, recurrence of K-H instabilities is possible in natural shear
layers.

By estimating the largest possible local velocity gradient in the base of a mixed layer,
Feniando & Stephenson (1991) estimated the local Rig as

Ris fRiRe-2(Dj( AU 4. (29)

This expression can be employed to calculate the Ri range required for the appearance of K-H
instabilities by using the criterion Rig < Rigc, where Rip - 0.25. Below a critical Ri, K-H
instabilities are possible. Above this value, the flow is dominated by wave-like instabilities
which grow and break sporadically (Narimousa & Fernando 1987). At very large Ri, the
interface tends to be flat, non-entraining and dominated by molecular-diffusive effects.
Estimates based on (29) were found to predict the transitions between different entrainment
regimes of the laboratory experiments of Stephenson & Fernando (1991) satisfactorily.

Entrainment characteristics of sheared interfaces have been well studied, but
unfortunately no unified consensus exists on the entrainment law; see Fernando (1991) for a
review. In addition, there are some outstanding questions concerning the energy radiation past
the interface into the stratified region, transitions between various entrainment regimes and
wave-turbulence interactions at the interface. A rigorous theoretical analysis encompassing these
issues is yet to be developed.
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PARTICLE-DRIVEN GRAVITY CURRENTS

Abstract for
4th International Stratified Flow Symposium

by
Herbert E. Huppert

Institute of Theoretical Geophysics, Department of Applied Mathematics and
Theoretical Physics, UDiversity of Cambridge, Silver Street, Cambridge CB3 9EW, UK

Gravity currents occur whenever fluid of one density flows primarily horizontally into
fluid of a different density. Inviscid currents in which the driving buoyancy is due to com-
positional differences were first considered quantitatively by von Karman (1940) and later
by Benjamin (1968). This presentation will concentrate on currents which are driven by
particles which gradually fall out as the current propagates. Examples of such flows include
sediment-laden currents which flow over the sea floor (known as turbidites), avalanches,
and ash-laden pyroclastic flows from volcanic eruptions.

After a few introductory remarks about gravity currents, a shallow-water model of a
particle- laden current will be described for which the dynamics of the current axe assumed
to be dominated by a balance between the inertial and buoyancy forces. The local density
of the gravity current, and the contribution this makes to the buoyancy, depends on the
local concentration of particles. The transport equation for this particle concentration is
based on the assumption that the particles are vertically well-mixed by the turbulence in
the current, are advected by the mean flow and settle through a viscous sublayer at the
bottom of the current. In addition,, it is assumed that no entrainment of ambient fluid
into the current takes place. The resulting equations describing the instantaneous release
of a fixed volume of a suspension onto a horizontal floor have been solved numerica ly for
various geometries (Bonnecaze, Huppert & Lister, 1993; Bonnecaze, Hallworth, Huppert
& Lister, 1994). To test the validity of the theoretical model we have carried out a series
of experiments using non-cohesive silicon carbide particles in water. In each experiment
the length (or radius) of the current as a function of time and the resulting deposition
pattern were measured. This data compared very well with the theoretical predictions,
which involve no adjustable parameters. Guided by the theoretical results, we will then
describe the interpretation of data obtained from naturally occurring deposits from the
deep sea (Dade & Huppert, 1994).

We (Dade, Lister & Huppert, 1994) have also investigated the propagation of and
deposition from a non-eroding gravity surge by a simple model for a two-dimensional, well-
mixed buoyant cloud of suspended particles moving down an inclined surface. The model
includes the effects of entrainment of ambient sea water, deposition of suspended sediment,
sea floor friction and slope. Solutions have been obtained to the coupled equations that
describe the conservation of momentum, total mass and particulate mass of the surge. The
solutions are found to vary on two length scales: xo, beyond which the behaviour of the
surge is independent of the inertial momentum and shape; and xZ, over which the driving
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buoyancy of the surge is lost due to particle settling.
The amount of entrainment of ambient fluid into the head of a gravity current prop-

agating along a horizontal surface will be discussed, and illustrated using a novel exper-
imental procedure. The technique relies on the neutralization of an alkaline current by
entrainment of acidic ambient fluid, which is visualized by using a pH indicator. Dimen-
sional analysis indicates that the proportion of ambient fluid entrained into the head of a
gravity current depends only on the initial geometry of the current and distance from the
release point, and is independent of the initial value of the density difference, a result which
is confirmed by the experimental data. It will be shown that measured downstream dilu-
tion is in quantitative agreement with the prediction of the theoretical model (Hallworth
et al, 1993).
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EXPERIMENTAL STUDY OF REGULAR BACKGROUND AND SHIP
INTTERNAL WAVES INTERACTION IN THE THERMOCLINE

OLGA D. SHISHKINA
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46 Ulyanov it., Nizhny Novgorod 603600, Russia 1

ABSTRACT

Experimcntal results on ship internal wAve propagation •in a hid with the tiie=mXoize -

type stratication in presence of favorable regular plae internal waves of various frmquea-
cia mre presentedL
TVe spectrum analysis showed that in the case of low bachgroud wave frequency the inter-
action beemm two internal waves system is Labseat, i.e. resulting interael wave spectrum
isa su pepositioA of the background and ship w&ves spectra. For higher backrund wave
frequendes the initial spectrum traudormed.

1. Introduction
The problem of internal waves interaction with submerged obstacles -- hydrodynamics

of submereged bodies as well as waves scattering at the obstacle - is one of important
problems of the stratified fluid theory.

At the present time this question is widely examined for the homogeneous liquid and
surfase waves presence. In the stratified fluid even for the linear assumption and regular
internal waves in the ideal incompressible fluid the pointed problem's solution causes a
lot of difficulties.

Theoretical investigations in the field of background waves influence on hydrodynamic
characteristics of submerged bodies have been fulilled by Wu & Eatock Taylor (1987), Wu
(1991) - for a submergrd body of the arbitrary form in a homogeneous liquid and by
Sturova (1992, 1993) - the plane problem on the surface and internal waves generation
and scatteaing by a cylinder disposed under the sharp density jump (two-layered and
continuous) in the case of potential fluid movement.

The author is aware of a single experimental work in this field in the stratified liquid.
But this way seems to be one of the perspective ways of hydrodynamic investigations
which allows to avoid serious theoretical problems. In the work by Yermanyuk (1993)
results of the power influence of plane regular internal waves in the two-layered liquid
on a fixed submerged sphere versus amplitude and frequency of internal waves and the

phnere's ption r•eatively to the inner interface are presented.
The aim of the present series of experiments on background and ship internal waves

interaction is a preliminary study of a phenomenon: reveal of resonant regimes and ship
internal waves parameters trankonnation. An another destine is the experimental data
use for the inverse hydrodynamics problem: calculation of the wave drag on a submerged
body by internal waves parameters.

2. Experimenal equipment
1 nE-mail: olgOhydro.niov.su
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Experiments have been carried out in the thermostratified tank in the lAP RAS with
the horizontally homogeneous thermocline - type stratification and overall dimensions
L * B * H = 5 * 1.6 * 1.2 m., The thermocline thickness was d = 0.20 m with its center's
depth h = 0.30 m. The upper and the lower layers densities were equal to the fresh water
density for the temperature t = 201C and t = 40C respectively. Profiles of the temperature
t = f(z), the Brunt-Vaisala frequency N = f(z) and the conventional density a = f(z)
are shown in Fig. 1.

As the ship internal waves source a sphere of diameter 0.15 m with its center position
of 0.30 mn and 0.26 m was used. In the first cawe several lower modes were excited, in the
latter case the first mode prevailed.

The working velocity value U = 0.03 m/s was chosen because of maximum respective
induced internal waves amplitude as the resonant case of the I-mode generation (with
respect to the mode's phase velocity ) occurs.

The Reynolds and the Froude numbers provided were Re = 3614 and Fi 0.67
respectively.

R = U7 D)

where
U sphere's velocity,
D diameter of the sphere,
v the fresh water kinematic viscosity coefficient for the temperature 120C

(water temperature in the center of the thermocline).

.= - U (2)
N~D

N,.,(z) the maximum value of the Brunt-Vaisala frequency:

S(LV(3)
where
g acceleration due to gravity;
pO water densit, at the ceuter of the thermocline;
dp/dz density variation due to the temperature variation at the horizon.

The data recording and procesing system is completely automated. Internal waves
pattern was recorded by horizontal chains of thermistors placed at the thermocline center
depth and at a distance of 2D from the sphere's trajectory. Digitized thermistors signals
were visualized at the TV monitor.

Plane regular internal waves generation was provided by the horizontal circular hemi-
cylinder of a diameter 0.10 m installed at one of the butt-end walls of the basin at a depth
of the thermocine's center. Wavemaker oscillation frequencies were 0.11 s-1, 0.18 s- and
0.26 s-1 (are shown by dashed lines in Fig. 2) with the maximum Brunt-Vaisala frequency
N,,. = 0.35 s-1. The amplitude of wavemaker oscillations was equal to 2.5 cm with the
background internal waves amplitude of about 0.5 cm which is of the same order with the
ship internal waves induced by the sphere.

One of the seious problems for experiments on internal waves generation is wave
damping. Wave's natural relaxation time is, as a rule, loot time. In the case of a two-
layered liquid this problem may be solved by meam similar to surface waves damping.



The case of continuous stratification is more complicated. In this experiment a rather
simple device, made of a great number of hanging down across the thermocline narrow
cellophane ribbons, fixed at a horizontal framework, was installed in the far end of the
tank and reduced waiting time twice. The device consists of two side parts (on each side
wall) with a centerplane space for a towed body and has a longitudinal dimension of a half
of typical (for this tank) internal waves length (A - 1.40 m). The internal waves damping
effects due to scattering of the running wave energy whilst the wave and damping ribbons
interaction. So, the regime of running background internal waves was provided.

3. Experimental results

After stationary background internal wavea recording the sphere was towed along the
tank favourahly to the background waves propagation and resulting internal waves profiles
were fixed.

In the case of the sphere's depth h = 0.30 n% and the sphere's velocity of U = 0.03 M/s
the first and the second modes generation is provided. Corresponding ship internal waves
frequencies are in the "middle" range - about half of the Nw(z) = 0.35 s-1 (see Figs. 2
and 3).

The ship internal waves transformation has been examined by the graphic subtraction
of the background waves profile from the resulting data. The spectrum analysis of obtained
profiles showed that in the mentioned case the backgound wave of high and low frequency
( 0.11 s-1 and 0.26 sa- ) interacts weakly with the ship internal waves system. I.e. resulting
internal wave spectrum is a superposition of ship and background waves spectra. But
middle frequency ( 0.11 s-1 ) seems to be resonant for those regimes (see Fig. 3).

In the case of the sphere's depth h = 0.26 m the first mode prevailes in the ship waves
system and corresponding higher frequencies clotse to Nr(z) are excited. As it is shown
in Fig. 4 the low-frequency background wave didn't transform the ship internal waves
system and presented a sharp line in the resulting spectrum. For higher background wave
frequencies the initiW spectrum transformed.
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EFFECT OF STRATIFICATION ON THE HYDRODYNAMIC LOADS ACTING
ON A SUBMERGED CYLINDER ADVANCING IN WATER WAVES

I.V.Sturova

Lavrentyev Institute of Hydrodynamics
630090 Novosibirsk, Russia
E-mail: wave~hydro.nsk.su

The 2-D problem on radiation and scattering of the small- amplitude surface and
internal waves by a horizontal cylinder moving at constant depth under a pycnocine
is considered. The fluid is nonviscous and incompressible. The sharp and smooth
pycnoclines axe simulated by the two-layer fluid and the three-layer one , respectively. In
the two-layer fluid, the upper layer can be both infinite and bounded by a rigid lid or a
free surface. In thL. three-layer fluid, tbe upper layer is bounded by a rigid lid. In all the
cases concerned, a submerged body is fully located in the lower layer of infinite depth.

Previously the problem of a submerged body advancing in regular water waves has
been considered only for surface waves in homogeneous fluid. The most efficient method
of its solution for bodies of complicated shape in a 2-1) and 3-D flows is recognized the
coupled finite element method (CFEM) [1, 2]. The velocity potential is represented by
the finite element method in a narrow region surrounding a body and by the boundary
integral equation in the outer region. This method may be also used in a stratified fluid
if the density varies only on the depths above and below a submerged body.

This paper describes the author's results given in [3-7]. The case of the two-layer
fluid under a lid involving a possible occurrence of the only free internal waves is most
completely analyzed.

Let the fixed frame of reference be taken with the 2-axis directed along an equilibrium
position of the interface, orthogonally with respect to a cylinder axis, and the y-axis
pointed vertically upwards. In the undisturbed state, the upper layer with the thickness
H and density p, occupies the lomain -oo < i < oo, 0 <y <Iithe lower one,
with the density P2 = pi(l + e) (e > 0), occupies the domain -oo < • < o, y < 0.
The fluid flow in each layer is irrotational.

In the fixed frame of reference the incident potential may be written as

= - 0#) exp[i(wot 4 k)], 0(') cosh ko(y - H), 0(2 = e-k0 sinh koH

where the incident wave frequency w0 depends on the wave number ko according the
dispersion relation,

signs '+' and '-' correspond to waves travelling from right and from left, respectively,
superscript a is equal to 1 for the upper layer and 2 for the lower one, g is the
gravitational acceleration.

In the moving reference frame x = t - Ut the total potential can be written as

4

4(' 3(X, y,t) =-Ux+4-!Ud)(x, y) + ReZ tIjp5')(x, )5 W

j-O

a.- --- O



where 6(s) is the steady potential due to the unit forward speed; the components

D'3) (j = 1,2,3) are the radiation potentials due to motions of the cylinder with unit

amplitude in each of three degrees of freedom; -qj are corresponding motion amplitudes;
0('1 = (o) exp(q:ikox) and 1(') are the potentials of the incident and diffracted waves,
respectively; and 170 = N74 is the incoming wave amplitude. In the moving reference
frame, the incident waves arrive with the encounter frequency w = wo T koU.

Based on the assumptions of linear potential flow theory, we can write the following
governing equations for the steady potential

A ) -0 (0< y <H), -(o)=0 (y <0) (1)

with boundary conditions
8O••)/y = 0 (y = H),

(I C•() r2±,0 Lqg &6() U, 4() a6(2) 0)
(-2 + WU y =, -Y-= (y =),

0•C2) 00) ;(a
-- (y -.- oo),- --a, 0 (xc-o),-o- < o0 (X-- -o).

The boundary condition for 4b(
2) should be satisfied at a mean position of the body

surface L: b(2 )/&n = -n, (x,y E L), where il is the inwaxd normal of the cylinder
surface and n- is the component of ii in the x-direction.

The radiation and diffraction components of potential satisfy the equations, similar
to (1), with boundary conditions

o( I )ly = 0 (Y = 11), (2)

(1 + E)D(()- Det') + gailO1y = 0, OaP')1/Oy -=O4A
2)/y (y = 0), (3)

00)/ay -* 0 (y -* -oo), (4)

8¢2/an = iwns - Urn1 (j= 1,2, 3), 4¢(/oI. = -o0/On (x,y E L),

where

D = (U8/OX -_,i) 2 , (ni,,n 2 ) = (n., n), n3  (y - yo)n. - (T - xo)ny,

(ri~n2 m3 = 2ý(2) 02.ý(2) a [(2)o a~2(7111 171, M 3) = ,O ,O 'O 1(y -- Y.) 1) o- (x o- X
Ox ' aOry'611 L Ox j '9

x0 and yo are the coordinates of a point with respect to which the body oscillates
rotationally.

The radiation condition for ) (j = 1, ... ,4) states that a wave travelling in the
direction of the forward speed and with its group velocity larger than the forward speed
is fax iii front of the body, and otherwise the waves propagate behind.

The moving body in waves is aiected by the hydrodynamnic force F and moment
M determined by integrating the fluid pressure p = -p 2 (a(J(2)/8t + 1V4(2 )12/2) over
the cylinder surface L

F Iul' M jPnadl. (5)



The representation F = (F1 , F2), M F3 is commonly used and for the linearized
problem Eq.(5) is substituted for the sum

Fj = Fj + Re(F.i + Fcj)eiwa, (6)

where the fixst term is due to an steady speed of the body and equals

Fo. p 2U2 Ij(o(2)/OX - 1212)nidt.

The second term in (6) is the contribution from the unsteady potentials •(2) (j 1 , 2,3).
Three components of the force and the moment are written in the matrix form

3 jL~i l -+ -t,2)

F = • jkrj, Tjk = -P2 (i ) + k ))d,
k=2

where 7 = UV(•(2) - X) is the velocity vector of a steady flow in the lower layer
relative to the moving reference frame. The radiation forces are represented in the form
Tjk = W2Ujk - iwAik, where ljk and Ajk are known as the added masses and damping
coefficients, respectively.

The exciting forces are determined as follows

F.6 = -P 2710o [iWQ¢L + 4+ 7(•) + 4i2))]njd.

To use the coupled finite element method it is necessary to determine the Green
function G(')(z, y, ý, r) , satisfying the equations

AG(')=0 (0<y<H), AG(2)=2 - (x-ý,y-,q) (y<O)

and boundar'.' conditions similar to (2)-(4). The solution of the problem for the Green
function in the lower layer G(2) takes the form:

(2) = (rr) f B(k) 2(,+e))

x { [(u2k2 - W2 )2  (U2 k 2 + w2)Q2(k)] cos k(x - ý) + 2iwkUn 2 (k) sin k(x - )} dk+

+7r (a, exp[k1 (y + q - i(x -- ))] •2 exp[k2 (Y + q - i(X -

-C9 exp[k3Q( + 77 + i(X - i))] + Q4 exp[k4y( + 7 + Z(X -

where pv indicates the principal-value integration,

I = (_T _ ý)2 + (Y _ n)2, rl = (X _ ý)2 + (Y +,q)2,

4

P = II P., P1 a(k) = Uk + w :F 11(k), P3 .4 (k) = Uk - w TFQ(k),
S=1

i(1 + -l )(k.)B(k1)2k.[= y-g:k-) (• = 1 at s = 1,2,3 and -y = -1 at, s 4),



ca(k,) = dfl/dk I=k. is the group velocity of the wave k.. The equation P1(k) = 0
has two simple real solutions, k, and k,,, with k, > k2, if only

U<Uo, W<wo, (7)

where U, = \H is the critical velocity for a steady problem in the two-layer fluid and
we = f(k,) - Uk, is defined post-solving the equation c9(k,) = U. Solutions ki and
k2 coincide, if w = wo, and are absent, if conditions (7) are not met. There are no real
solutions for equation P2 (k) = 0. In contrast, the equations P3(k) = 0 and P4(k) = 0
always possess unique real solutions, such as k3 and k4, respectively, with k3 > k4 .

With H --* oc, the k, solutions are equal to

k1, 2 = - (I -2r ±), k3A, = ( + 2 ±v1 4),
2U2 2U1

where r = wU/l, j =g/(2 + c). In this case w, = g/4U. With c -* oo one will
obtain the known solution for a homogeneous fluid with a free surface [1].

The numerical calculations are performed for the elliptic cylinder

X2/a"4 + (v- + h) 2/b2 = 1,

where a and b axe the laxge and small half-axes of the ellipse, h is the depth of
submergence of its center under the interface.

The steady loads (a wave resistance, a lift and a trim moment) has been studied
extensively for the different types of the density stratification in [3]. The numerical
calculations are compared with the approximate analytical solution based on the use of
the Kochin function and suitable for a body deep-submerged under the interface.

For simplicity let us give the approximate solution for a wave resistance in the two-
layer fluid under a lid :

(1 + O)P2 R(A) K2.)
2B(A)[U -

Here A is the root of an equation R(A) = UX, whicb exists only at U < U, and K
is the Kochin function for the elliptic cylinder

K(A) =- 2rUb b' '

where J1 is the Bessel function of the first order. For small values of the product
A/,,'- R2 the Kochin function may be presented K(A) _ 7rUbA(a + b)e(-. The wave

resistance determined by this means is called the dipole solution.
The approximate solution for the wave resistance in two-layer fluid with a free surface

presents a sum of surface and internal wave contributions.
A steady loads for the elliptic cylinder in the two-layer fluid with a free suilface

determined by CFEM with the element number m = 18 axe shown in Fig. 1 fcor
a = h = 2b, z = 0.03, H = b, xo = 0, Yo -h (solid lines). The following designations
are used (f/, F11) = (-Fr, FW)/p 2U2 b, M = -M/p 2U2bV. The above values are compared
with similar those for the two-layer fluid under a lid (dark points) over the range of the
Froude number 0 < Fr = U/Vf < 0.2 and for a homogeneous fluid (e = 0) (light
points) over the range 0.2 < Fr < 3. lI Fig. 1 are shown the approximate solution (dot-
and-dash line) for a wave resistance and dipole solution (dash line). With small values
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of the Froude number, the internal waves are principally excited and their characteristics
agree practically with those of the two-layer fluid under a lid. Then with increasing Fr
the generation of the internal waves ceases and the only surface waves are excited. The
critical velocity of the body for internal waves shown with an arrow is U"/v'h = 0.1224.

In the three-layer model ot a smooth pycnocline the fluid density distribution in the
undisturbed state takes the form:

Pi (H,1 < y < Hi 4- H2),

p(y)= pi[1 + e(l - y/lH] (0 < y <I),

P2 P p1(I +) (y < 0),

where H1, 1t- are the depths of middle and upper layers, respectively. The fluid flow in
the upper and lower layers is irrotational. The wave flow equation for the middle linearly
stratified layer is used in the Boussinesq approximation.

The steady loads in the three-layer fluid are presented in Fig.2 at e = 0.03,
H, = b, H. = 0.5b, a = 2b, h = 1.5b. In Fig.2 axe shown the results of CFEM (solid
lines), the approximate solution for the wave resistance (dash-and-dot line) and dipole
solution (dash line). The following cri.'cal velocities of generating appropriate niodes of

internal waves are depicted (arrows with numbers): U/lF = 0.1137 (n = 1), 0.0336
(n = 2), 0.0186 (n = 3). For comparison with the two-layer fluid, the value Ii = h+1it/2
is entered, which defines the distance from the body centre to the pycuocline midline.
Fig. 2 gives the only range of values UŽkih > 0.013 wherein there are yet no more
than three internal modes. From the comparison of Figs. 1 and 2 it is obvious that the
internal wave in the two-layer fluid and the first wave mode in the three-layer one have
a similar hydrodynamic effect.

The solution of radiation and diffraction problems at U = 0 are obtained for the
two-layer fluid bounded both by a rigid lid and by a free surface [4,5]. In the diffraction
problem, apart from exciting forces, also is determined the behavior of scattered waves
in a far field. The reciprocity identities relating the solutions of radiation and diffraction
problems are derived. The first diagonal term of the radiation load for the elliptic cylinder
iln the two-layer fluid with a free surface is demonstrated in Fig.3. The flow parameters
coincide with those used in Fig.l. The coefficients /Pul and All are compared with
similar values for the two-layer fluid under a lid (dark points) and the homogeneous fluid
(light points). For the damping coefficient All, the approximate solution obtained by the
Kochin function is shown with dash.and-dot line and the dipole solution is denoted with
dash line. With sinail frequency of body oscillatluo, the lilernal waves are Significantly
excited and their characteristics agree practically with those of the two-layer fluid under
a lid. As the frequency increases, the generation of internal waves is weaken and the
surface waves whose characteristics are slightly affected by the density variation become
dominant.

An interesting peculiarity of the diffraction problem for stratified fluid is that when
the given mode wave incidents on a body it scatters not only into itself but also into all
the other modes. This is one of the mechanisms of energy redistribution due to wave
motions, in particular, that of the surface wave energy transfer to depth.

Based on the approximate solution for a deep submerged body, the influence of
anomalous frequency dispersion of internal waves on the processes of scattering and
generation is determined [6]. This internal waves are characterized by a nonnionotonic
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behavior of their group velocities. One example of this fluid is a three-layer one involving
linearly stratified upper and middle layers and a homogeneous lower one. In this case the
mode 'leap-frog' is observed when the excitement of higher modes is more intensive then
of lower ones.

For radiation and diffraction problems with forward speed all the components of loads
are correlated for the cylinder moving under the free surface in a homogeneous fluid and
under the interface in the unbounded and the bounded by lid two-layer fluid [7]. Contrary
to the case without forward speed the added mass and damping coefficients have no
longer the symmetry properties and there are some motion regimes where the dam-ping
coefficients take negative values. Starting from the assumption of a deep submersion
of a body, the amplitudes of radiation and diffraction waves in the far field as well
as the diagonal damping coefficients and exciting forces are calculated. The numerical
calculations of pis and A11 are shown in Fig.4 for the elliptic cylinder located under the
free surface in the homogeneous fluid (a), under the interface in the two-layer unbounded
fluid (b) and in the two-layer fluid with a bounded upper layer (c) given the same
parameters as in Fig.3 and U/lvy' = 0.4. In FigA are shown also the approximate
values of A11 for the same three cases of the fluid density stratification. The following
designations are used

M4j = pji/4Aý A, = 7rbwA 1j/g, (J4p; 2 ý,J, 3 ) = irp2[b2,a2 , (a2 - 2)2/8].

With forward speed the approximate solution is seen to provide a quite rough representa-
tion for damping coefficients, especially for A3w. The values w,2b/l = 0.3906 (Figs. 4a,b)
and 0.3642 (Fig. 4c) are indicated by arrows.
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Lee waves and hydrodynamical loads due to the motion of a
submerged horizontal circular cylinder in a three-layer fluid.

by Oivind A. Arntsen, Dr.ing.,
Department of Structural Engineering,
The Norwegian Institute of Technology.

Abstract: Laboratory experiments and analytical studies investigating the interaction of
two-dimensional, uniform stratified flow with a submerged horizontal circular cylinder are
presented. Measurements were made of the interfacial waves formed behind the cylinder
towed horizontally at constant speeds, and of the drag and lift forces exerted on the cylinder.
An analytical linear model that describes the wave field and t'- associated wave induced
drag force is formulated. In this model, the water is model4- zs a uniform flow of three
layers of inviscid and immiscible fluids. A solution is fount ior the case of the cylinder
located in the upper layer. The experiments showed that Lbrge amplitude first mode internal
waves are generated when the cylinder is towed at about one half of the long wave celerity
of first mode waves. The analytical results underestimate the wave-induced forces, but
demonstrate the role of a finite stratified layer. The results are applied to the proposed tube
bridge across Hoegsfiorden in Norway.

Introduction: Norwegian fjords often exhibits a distinct density variation in the upper
water. Between the upper mixed layer and the salt water layer a transition zone exists (often
called the pycnocline). This region of strongly variable density can act as a duct for low
energy density waves that propagate on the pycnocline without significant interference with
the free surface to the atmosphere. The free-surface vertical displacement due to these
internal waves is much smaller, by a factor &4/P3, than that of the internal disturbance; and
thus, for many practical applications, the free surface may be considered as a "rigid-lid".

Depending on th jpx of disturbance and the basin in question, different types of waves
may occur, standing, propagating or combinations. For example, the disturbance of a slowly
moving object on the surface of the water, may be an effective internal wave maker, while
at the same time disturbances on the free surface is hardly seen. Similarly, a unifoirm flow
over a submerged object such as an underwater sill can originate standing internal waves,
known as lee-waves. These effects are closely related to the phenomenon called "dead-
water". This effect, known for sailors for centuries, was studied for the first time by Ekman
(1906). The advent of offshore activity has again led to slow tows, and a re-appearance of
"dead-water" was documented by Arntsen (1986) during a towing of the large volume
structure, Condeep Gullfaks A, off the Norwegian coast in August 1985. More recently, a
renewed interest has evolved connected with the effort of analyzing the induced internal wave
pattern produced by moving vessels using remote sensing means. The emphasis there is on
determining the kinematic features of the internal wave-field, rather than the wave resistance.

In this paper I address a somewhat different, but related problem. During the last years

a new type of structure has been proposed to be installed in Norwegian waters - the
submerged tube bridge. This is a watertight hollow cylinder (proposed to be of circular
crossection) with an inner diameter large enough for road traffic. It is located below the sea
surface deep enough such that ships may pass over it. Carpenter and Keulegan (1960)
present a series of experiments pertinent to the topic of this question. Submerged cylinders
both circular and non-circular were towed at constant speed in water consisting of two layers
of water with different salinity (density) and an extremely thin stratified interface layer. The4A



noncircular cylinders had a length to thickness ratio equal to three and were not very
streamlined. They found that the main characteristics of the internal waves were independent
of the shape of the cylinders. Carpenter and Keulegan give also a linear potential solution
for the flow in two immiscible fluid layers and disturbed by a disturbance modeled as the
flow around a circular cylinder in homogeneous water. Their model fails to estimate the
observed wave heights, but it works well for wave lengths. In their experiments Carpenter
and Keulegan did not include measurements of the hydrodynamic forces on the cylinder.
They suggested that the total drag force on the cylinder can be estimated by adding the wave
induced drag to the drag present in homogeneous water. The wave induced drag is to be
calculated from the lee wave and stratification variables. However, it is not as obvious as
for streamlined obstacles that the total drag force is given by this sum. The presence of
stratification may move the point of separation and alter the form drag part of the force.

"The investigation discussed in this paper resembles much that of Carpenter and Keulegan.
The basic difference is the inclusion of force measurements in the experiments and that the
stratified layer is of finite width rather than shallow. It is demonstrated that the dispersion
effect of a finite width of the stratified layer down-shift the towing speed for maximum
"dead-water" effect. The inclusion of a stratified layer in the theoretical framework of
Carpenter and Keulegan shows improvement of describing the computed internal wave-field.
In spite of this success, the observed maximum wive height is about two times the value of
the theoretical, but an adjustment of a free parameter y can correct this deficiency. The
investigation provides a database for "dead-water" forces exerted on submerged cylinders in
stratified uniform flows, and guidelines for applications in full scale are suggested.

7 = Laboratory experiments: In the following, a brief
] Iz ,o description of the present experimental arrangement

------------.-- and techniques for the measurements of internal
-................................. 1o waves and hydrodynamic forces are given. Only

some of the experimental results will be shown. A
"...' .......... ..................................... ." more detailed description and presentation is given in

d h' m,,ad layer Arntscn (1994). The work presented covers two-
A).......... , (4 dimensional model tests of a fixed submerged circular
-- --- L: eI cylinder towed at constant speed in three-layer
U Ap' stratified water.Of a total of 350 tows, 225 were with

I W& 'tLff stratification and 125 in homogeneous water. The
_______'__________ W. runs were performed in a test channel which was a

Z'/c1< ý._ +-Aa-4- 6mn long, Im wide and 0.4m deep plywood tank. Over

_- -- a distance 4m, parts of the side-walls were replaced
by perspex facilitating optical recording. The salt
water was mixed and dye was added such that the
interface became distinctly visible. When the salt

k2- water was well mixed and came to rest, a layer of
I) dtad 2) suport ban3) carkW; fresh water was carefully spread on the top of the salt

•pasio mtx' r 6) raUiA water. During this process some mixing occurred on
ar f the interface and the stratified layer developed. This3va•,ad k •r; 10) bavrwaryma j- , ,rda mwer l•uer, layer (approx. 4cm thick) was kept unchanged

1J) flaw bottonm
,): £t~caha•, , ,. throughout the experiments, though its thickness and

C): aDefaol om wav i'da and 5kntk location changed slightly after each tow.
Mig. 1 Definition sketches of the setup. The machined circular cylinder of diameter 50mm

2_



and spanning the width of the tank, was mounted under a carriage that was pulled
vibrationless on a pair of tempered steel rods, one mounted on each flank of the tank. 'I he
towing speed was kept constant for each tow and the start and the stop was impulsive. The
cylinder was kept in position at a chosen depth in a frame attached to the carriage. A
definition sketch of the model is shown in Figure la and the stratified layers are as in Figure
lb. Before each tow, small particles were distributed in the tank approx. 10cm from the front
wall. These particles of typical dimension 2mm and with densities less than the salt water but
heavier than the fresh water, were excellent tracers of maximum vertical displacements of
the stratified layer during tows. When the tank was illuminated from behind, the dye and the
particles became sufficiently visible.

For the measurements of the forces a stiffsensitive and accurate system was needed. The
improvement of an existing shear force transducer that fulfilled these requirements was
accomplished during this investigation. A pair of these transducers were connected to a 50cm
long section of the cylinder in the middle of the tank, and provided simultaneous
measurements of flow-induced in-line and transverse forces exerted upon it. The
documentation of each tow consisted of time series recordings of cylinder position, lift and
drag forces and photos and video recordings, and measurements of density profile.

The wave pattern obtained from tows like this is fundamentally the same as for the
hydraulic problem of stedy]lo past a fwd cylinder. The difference is mainly a subtraction
of the tow speed. A difference that may be of importance, but not considered L. ,e, is the
turbulence level of the undisturbed flow. In these experiments it is approximately zero, while
in a steady stream it can be considerable and with energy in a wide frequency band.
Disregarding this effect and by correct scaling, the model data can be used to determine the
"dead-water" loads on a tube bridge exposed to transverse stratified flow.

The flow around the cylinder perturbs the interface, and at lower speed tows a series of
internal waves of the type sketched in Figure 1.c are formed behind the cylinder. The
characteristics of these waves, the wave height H and wave length X, are presented in
Figure 2 and Figure 3 respectively. The wake behind the cylinder undergoes changes which
is of importance concerning the wave resistance f,, (mean in-line force per unit cylinder axis
length) and the lift force f. (mean transversal force per unit cylinder axis length) on the
cylinder. These results are summarized in Figure 4 and Figure 5 respectively. For the cases
of uniform flow of homogeneous water past a cylinder and which external bounding surfaces
are far from the cylinder, it is well understood that the flow character depends on a single
dimensionless variable, the Reynolds number, Re = UDIP, in which v is the kinematic
viscosity coefficient of water. However, with the presence of a stratified water these data
show that there is a flow regime where a densimetric Froude number

1. b. ' AM%

A- 0 7 00Z.
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Fig. 2 Variation of wave heights. Fig.. Variation of wave, lengths.
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An internal wave version of the tow resistance formula given by Lamb (1932, art.:249)
relates the far dcwnstream waves to thi the satinduced tow resistance Ri:

RW = E(1 - c 9/U) = 0. 125ApgH2 (I - c 8lU), (4)

where/:' is the mean energy per unit horizontal area due to the presence of internal waves,
and c-. is their associated group velocity. This expression has been compared to the
difference of in-line forces measured in homogeneous and stratified water. For0.4 <Fr < 0.6
the present data show that R, is a good estimate for the increased tow resistance, except for
die cas when the cylinder is located within the stratified layer. There, the in-line force does
not increase but decreases in stratified water, although waves of appreciable heights were

2.0-- - ---7-.-____ _. • observed. Else, the diagram of Figure 6 can
be used for calculation of the internal wave

. .induced drag force. Let Frd,Cr define when
.) - ,, . the steady in-line force in stratified water

. -. -- drops below the similar homogeneous water
value. Comparisons of the present results

I -with those of Carpenter and Keulegan (1960)
.. .... . .. .. L ,- suggests an liD dependency of Fr,,., As

- .mine experiments reveal maximum wave
0. .. 0 ~0! heights at Frd = 0.5 and Frd,cr = 0.6 and the
00 02 04 06 a 1.0 2 '.4 dcprevious had maximum waves at Frd=0.8,Fig. 6 Recommended values of increased drag this suggests that Fr 0.9 for those

coefficient for a horizontal cylinder t s t0h
exposed to stratified flows. conditions. This presumption is used in the



construction of Figure 6. The graph is valid if 0 <SO <D0.75, where 5 is the distance from
the nearest edge of the cylinder surface to the center of the undisturbed stratified layer, and
it is divided into three ranges. The thick lines apply if z,1D> 1.3 where the l/D-dependency
is included. The dashed line is for zoID-0.7. If the cylinder touches the surface the dotted
line apply. If 51D> 1.5 and zI/D; 1.0 there will be no influence on the drag force due to
stratification. For values of 5/D between 0.75 and 1.5 linear interpolation of the forces
seems appropriate, provided zoID > 1.0. For z6,/D < 1.0 and SD > 1.5 the presented data can
not tell the effect of stratification. However, this situation fits the conditions of the theory
presented below very well.

Theoretical development: These experiments showed that the largest internal waves
occurred for densimetric Froude numbers somewhat below the value Carpenter and Keulegan
found in their investigation. The major difference between my experiments and those of
Carpenter and Keulegan lies in the width of the stratified layer. Their theoretical approach
to the problem is therefore adopted to a three layerfluid system. Only the case when the
cylinder is moving with constant horizontal velocity in the upper layer is considered. It is
assumed that the surface of the cylinder is located far from the interface z - -d. A rigid lid
boundary condition is applied at z =0 and the method of successive images, (see
Carpenter,1958), is used to find flow potential k in the upper layer (with velocity
components = -VI,):

-UX + U(r) + U(Yr)2  + (5)
x + (z+z")2  x•" + (z+zQ)2

Here 4) represents the disturbance potential including tne wave motion. Y is a factor
accounting for an effective increase of the cylinder radius due to the image doublets. Wihcil
the cylinder is far from the interface z=-d, -y is a function of zo/r (r=D/2), and is
determined by the methods found in Carpenter (1958) and plotted in Figure 7. In the lower
salt water layer the two middle terms can be disregarded and the flow can be modeled by
the potential:

43 -Ux +' 03  (6)

Both potentials satisfy the Laplace equation:

V-j =0 , j-l,3. (7)

In the stratified layer the motion will not be irrotational. Following Phillips (1977) and the
assumptions of small disturbances and Boussinesq approximation, the equations of motion
for the disturbance become: Ow• Ou.

' + L= 0, j-1,2,3; (8)
Oz ax

U ( . + _--•J + Nziw, . 0 , j-1,2,3. (9)ax7 2z2  ax) Ox2

Here, uj and wj are the perturbed horizontal and vertical particle velocities within each fluid
layer], and 0 ; -d<z<0

P TO N 2 ; -d-1 < z < -d (10)

0 ; -d-l-s < z < -d-I

£27
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Combined with the proper set of boundary
v' [I I - conditions, listed below, these equations

.... .. I........ ....... determine the resulting non-.viscous flow
12 F.- around the submerged cylinder.--L........................, 

ki e a c

S I z = 0 w1 o1 .0 1 .2 1. 1. 3 2. 0 ~ 2.2 2.4 z = - .d W2 = W 1 - U at 'lax U1 - U2z22.(,P z = -d-I W3 - W2 - Ua laX /x U2 - u3
Fig. 7 Variation of radius factor with distance z - dl w3 -0

below the free surface (after Carpenter (1958)). Z = -d-s w3 -0

A horizontal Fourier-transform method is used to derive the solution of the problem. The
transform pair used is shown in eq.'s (11 a,b). The inversion integral for vertical
displacement ý is found to be as in eq.(12),in which K2 - (No /Uk)2 - 1.

Rqkz) = f(x,z) exp(-ikr) dx ; ftx,z) = J. k,z) exp(i) A (112,b)

(X,z) S(k) G(kz) cos(kx) dk
S Q(k)

where

a): S(k) = 2 z U ('yr)2 e(-" cosh(kz,)

b): G(k) - { LQ(k) + T(k) sinh(kd)] cos(K k (z+d)) + (12)

- [Q(k) - T(k) cosh(kd)] sin(x k (z+d)) },
K

c): T(k) = K tg(Kkl) tanh(ks) + ltg(xkl) + tanh(ks) - 1

d): Q(k) cosh(kd) {ic[tanh(kd) + tanh(ks)] -

tg(xkl) [x2 tanh(kd) tanh(ks) - 11} = cosh(kd) q(k).

The value ý(x,z) is controlled by the behavior of the denominator, Q(k), near its roots in
k-space. Q(k)=0, with Uk in x replaced by W, is in fact the dispersion relation for waves
freely propagating in the non-flowing three layer fluid system. For a given k, Q -0 as a
function of i has an infinity of solutions, K,, each representing a different wave mode.
However, when No and U are given, the number of solutions, J, is bounded by the
requirement; Co < U < co:), where co(j) is the maximum wave celerity for wave mode no.
J. First mode internal waves (J = 1) are the most dominant observed behind the cylinder. It
can be shown that c(() N !!, 1/ ,, where a, is the lowest v-alued nonvanishing root of
tg(ao) - ao (d+s)lI(aOds - 1P). The Cauchy integral theorem and the principal value (CPV) give
the wanted solution. Since our main interest is placed upon the condition at some distance
downstream of the cylinder where only die oscillatory part of the CPV value is significant,
the amplitude of the vertical displacement (in the stratified layer) is given by eq. (13),in
which q/(ko) - (aq(k) /ak) Ik-k0' and k0 is the lowest valued nonvanishing root of q(k) -0. The
value kI - 21r/X is the wavenumber of the internal wave standing stationary behind the
cylinder. Maximum vertical displacement occurs within the stratified layer for z =z,, defined
where w2(z) has its maximum. i.e. where a, 2(k,z)/az - 0, which yields
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z,., =-d-IarCtg(l/(Ktnh~kd)jI(k). In the
2 - ;• derivations above it is assumed that no

,-.;rv,•- disturbancesare present far upstream. The
':1 0-.2 0!.4 . ., 0. .9 0:8 1.0 experiments confirmed this assumption.

Weo, Recalling the assumptions of the theory, it
Fig. 8 Dispersion relation for different stratified can only apply to the observed waves of
layer thicknesses. z,/D equal 0.7 or 1.3. In Figure 8,

theoretical and observed wave-lengths are compared for one set of data. The dispersion effect
of the presence of a stratified layer is clearly seen. A very good agreement is achieved for
Ulc1 < 0.6. Similar results are obtained for other data sets. In Figure 9, theoretical curves
for wave amplitude for different values of y are shown together with one set, zo]D - 1.3 of
the observed values. According to the method of Carpenter (1958), the proper y-value is
1.02. It is seen that the observed values for the smaller wave heights is better modeled byy
about 1.4. Better resemblance between theory and observations is achieved when zo/D - 0.7,
see Figure 10. This configuration is also in more accordance with the theoretical
assumptions. In light of these findings, it is concluded that the theoretical formulation can
be used to model the wave heights. But as the cylinder approaches the internal boundary, they - value
needs to be increased. The present study, suggests -y -1.6 as the conservative upper limit,
and that the theory is valid up to the towing speed corresponding to the observed maximum
wave heights.
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Fig. 9 Variation of wave height, comparison Fig. 10 Variation of wave height, comparison
with theory. zD=1.3, lh'=0.3, /pp3 -0.039. with theory; z/D =0. 7, l1/h'=0.3,A=p.024.

Application - Hoegsfjord tube bridge, Norway: The aims of the model tests and the
theoretical approaches were fundamental, and do not directly apply to a scaled model of a
particular bridge. However, the results agree fairly well, so together with realistic site
specific hydrographic data and some simplifications, the major influence which stratification
has on the hydrodynamic loads exerted upon the bridge can be derived. For all calculations,
it is assumed that the bridge is a smooth circular cylinder of 10m dianmeter, lying
horizontally with its axis at z0,= - 25m. Based on site measurements, four extreme stratified
conditions have been determined for the analysis of 'dead-water' effects, these are listed in
Table 1. Eidnes & al. (1988) recommend design current speed U100 =90cmls at z = - 5m and60cm/s
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at z ff-20m and deeper. For depths in between, linear interpolation is used.
First, I consider steady in-line forces. An important parameter in the discussion of loads

is Frdu,, which is defined as the lowest possible Froude number at design current speed.
If Frd,,u, > Frd.¢r, the design loads determined for homogeneous water need not be changed.
If the conservative value of Fr,,r -0.8 is used, Frdm,, is larger than Fr,,,, at z--5-m, but
less for z -20m. For the stratifications El0, E15 and E20 the design speed gives
Frd,,u=0.7 . Therefore, CD should be increased. Referring to Figure 6, an increase of 0.4

is conservative with respect to the force value. This has the same effect as if the design
current speed were increased from 0,6 to 0.8 m/s and without changing the CD valid for
homogeneous water.

Referring to Figure 4, maximum 'dead-water' effect occurs at Frd = 0.5, and Figure 6
gives an increase of CD by 0.4. For stratifications as in Table 1, this occurs at U-= 0.45m/s.
The appropriate drag coefficient in homogeneous water is 0.5. Thus at this speed the effect
of stratification increases the in-line drag from 520 N/m to 940 N/m bridge length.

For densimetric Froude numbers below 0.45 and the tube located near the stratified layer
(SlD i< 1), the laboratory experiments show the possibility of a mean lift force. Maximum
lift occurs when the tube has a clearance to the center of the stratified layer equal of about
D/2. The magnitude of the lift is independent of whether the tube is located above or below
the stratified layer (but negative for tubes below the pycnocline). Referring to Figure 5,
maximum lift occurs at Frd = 0.3. When the model data are scaled to prototype values it is
found that a steady flow induced lift force of 400 - 500 N/m length of the bridge may occur
during moderate flows (-0.3 m/s) and strong stratification (El5).

Table 1 Extreme stratification in Hoegsftorden.

Stratification: h' Ja] Ap[kg/m 3] Nn [rad./s] l m] - C [misi

ES 5 10 .16 3.8 0.70

E19 10 7 .13 4.0 0,82

E15 15 5 .10 4.8 0.85

E20 20 4 .10 3.9 0.88
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ABSTRACT z In order to investigate the flows over a topography in atmospheric context,
we have experimentally studied the wake structure of axi-symmetric gaussian obstacles
towed in a linearly stratified medium. Three dimensionless parameters govern the flow
dynamics : F, the Froude number based on the topography height h ; Re, the Reynolds
number based on the width 2L measured at the mid-height and the aspect ratio r=h/L. The
main regimes determined for the sphere by Chomaz et al (1993) are retrieved. For F<0.7
the flow is observed to go around the obstacle and the wake consists mainly in a quasi-two-
dimensional layer with vortical motions . This layer is topped by a region only affected by
the lee wave whose amplitude is an increasing function of r and F. For 0.7<F<l/r the flow
is entirely dominated by a lee wave of saturated amplitude which suppresses the
detachment of the boundary layer from the obstacle. Above the critical value 1/r, the lee
wave amplitude decreases with F and, a recirculation zone reappears behind the obstacle.
Simultaneously, coherent large scale vortices start to be periodically shed from the wake at
a Strouhal number that decreases as 1/F until its neutral value.

1. Introduction

Recently, a large research effort has been devoted to the study of geophysical flows over a
topography. Such phenomena, are particularly important in meteorological context since
the earth topographies generate internal gravity waves that transfer energy from the
surface to the upper atmosphere. The processes induced by the propagation of internal
waves are important and ought to be taken into account in weather forecasting models. New
developments of non-hydrostatic models, requires precise laboratory experiments in
order to document test cases. Brighton (1978) and Hunt and Snyder (1980), studying reliefs
with aspect ratios (r=h/L) close to 1, have shown that such flows are mainly controlled by
the Froude number F=U/Nh, where U designs the flow velocity and N the characteristic
Brunt-Viissfli frequency of the medium. They demonstrated that for small values of
F, the near wake is quasi-two-dimensional, and that for F-i, the flow separation line is
conditioned by the generated lee wave field. Chomaz et al (1993) and Bonneton et al
(1993) have extended such an investigation by examining the dynamics of the stratified
flow past a sphere for a large range of Froude number.
Theoretical analyses, of the stratified flow over an obstacle, have been elaborated by Smith
1980), in the hydrostatic frame work, and by Crapper (1959), Lighthill (1978) and Voisin
1992) for the non-hydrostatic approach. In this paper we describe the near wake structure

of axi-symmetric gaussian obstacles towed uniformly in a linearly stratified fluid. We
demonstrate the influence of both, the Froude number and the aspect ratio, on the flow
structure. Experiments were performed in a water towing tank of size 0,5*0.5*4 m3. This
tank was filled with a linear stratification using salt solutions, a wide range of N has been
explored: Nc[0.67, 2 rad/s]. Four gaussian models :r=0.28, r=0.56, r=0.8 and r=1.12
were used in the experiments. The towing velocities were varied from 0.5 to 25 cm/s.
when for a given stratification N and a given model r the velocity is varied, the two
dimensionless numbers F and Re (Re=U(2L)/ v, where v is the fluid kinematic viscosity),
evolve proportionally in the form Re=Re(F=I)F, where Re(F=I)=2NrL 2/v. In the present
study, F was varied from 0.2 to 14 and Re from 800 to 25000.



Visualisation and measurement techniques applied in the experiments presented here have
here have been described in detail in Chomaz et a] (1993).

2. The lee wave dynamics

Particle streak photographs of the flow over two gaussian models r=0.28 (figures L.a, 1.b,
1.c) and r=0.8 (figures 1.d, I.e and 1.0 illustrate the evolution of the lee wave versus F.
At large F (figures L.a and 1.d) a three-dimensional (3D) recirculation zone is present
behind the obstacles. Both the size and the unsteadiness of this zone increase with F,
whereas the lee wave amplitude decreases. For F close to 1 (figures 1.b and L.e) the flow is
entirely dominated by a saturated lee wave (SLW regime). For F smaller than 0.7 (figures
1.c and 1.f), the lee wave amplitude decreases and a two-dimensional (2D) layer appears
close to the ground. For r=0.28 (figure 1.c) the wave amplitude is much smaller than for
r=0.8 (figure 1.J) and only the first crest is visible.

r 0.28 r = 0.80
a d

L F =5.0 L F =1.56

SF =1.6 F 1.06

C f

. F=0.6 F =0.57

Figure I Vertical particle str•ak photographs for r=0.28 (Rc(1)= 1600) and for r=0.8 (Rc(1)=2100)

On figure 2, we have plotted measurements of the fee wave wavelength as obtained from
the pa...clc streak visualisations for iliree gaussian models (r=0.28, 0.8 and 1.12), we have
also reported Hanazaki numerical results (dashed line) for a sphere, and the point source
linear theory predictions (continuous line). We observe that measurements are in good
agreement with the theoretical predictions without influence of the body shape detail. From
such visualisations we have determined the spatial distribution of the vertical component of



the velocity field, which enables us, to deduce the correspondent distribution of the local
amplitude of the lee wave. We have reported on figure 3, for r=0.28 and r=0.8, the angle 8
between the horizontal and the direction where the local wave amplitude is maximum. We
may see that for both models, 0 decreases notably between FI.2 and 1.6. Even if, the
precision is rather poor for r=-0.28 when F is close to 0.4, because of the small amplitude of
the lee wave, figure 3 clearly demonstrates that 0 is much larger for r=0.28 than for r=0.8.
For small r and small F, the measured angle 0 is close to the value 900 given by the
hydrostatic approach (Smith (1980)), whereas, for large r, the limit value of 0, as F goes to
zero, is consistent with the point source linear theory prediction 0=45* (Lighthill (1978)
and Voisin (1993)).

1 I, 0.28 I LiOtI30 n = 0 28

DOOMr - 0.28 0.80
CIOX3r - 1.12 x/

'2 -80.00

I 0 X 60.000

.40.00

20.00

'F

Figure 2 Figure 3
Evolution of the lee wave wavelength versus F Evolution of the angle between the horizontal

for several models and several Rc(F=l). and the direction of maximum local amplitude
veisus F for j=0.28 (Rc(I)=900)

and tor r--0.8 (Rc(1)=2100).

Figure 4 presents the evolution of the maximum vertical displacement 1; of a fluid particle,
due to the lee wave, as a function of F for r=0.28 and r=0.8. For both cases, we observe that
the amplitude (r/h) increases up to F about 0.7 (2D regime). Then, it saturates around Fo-I
(SLW regime) and finally, starts to decrease for F larger than 1/r. A similar behaviour is
detected for the two other models r=0.56 and r=1.12. The initial increase of the amplitude
with F may be explained by the energetic arguments of Sheppard which predicts : 01 = F.
However, the theoretical predictions seem to overestimate the amplitude for the small
aspect ratio (r=0.28) and underestimates it for large r (r=0.8). The transition in the lee wave
amplitude at F-1/r, has been theoretically predicted by Queney who showed that a
resonant regime occurs when the effective wavelength of a mountain (2nL) equals the lee
wave wavelength (2rU/N). For r =0.8, the decrease in amplitude, observed at large F,
seems to agree with', the point source theary which predicts : V/h =I/F.



0..

and for r=0.8 (Re(l)=1300, 2100 and 2700).
- :Sheppard's theory ; ------ :source point theory

3.The 3D regime (F a 1r)
* 110moe2eneous wake:
In order to understand the stratification effects on the close wake, the kniowledge of the
wake in the homogeneous configuration is required. As well as for the sphere (Chomaz et
al (1993), Kim and Durbin (1988)), we have observed that, for Reynolds numbers greaicz
than a critical value Re.,, the wake is affected by two instability modes :a high frequency
Kelvin-Hfelniholtz shear Instability (MH) of the separated layer and a low freqi'ency mode
(VS) associated with the shedding of large scale coherent vortices (Jigures 6.a aud 6.,.!). 14'or
smaller Reynolds number values, only a single mode is present. Figure 5 shows for r=0.8,
the evolution of the Strouhal numbers S (S=f(2L)/UJ where f is the emission frequency), a4
obtained either from fluorescent dye visualisations or from velocity measurtements. Above
Re,-13OO, the Strouhal numb1er of the low frequency wake instability stab~ises around
Svs-0.55 whereas the high frequency branch (KH mode) keeps increasing. A simiat-r
behaviour is observed for the different moadels tested, values of' Re,~ and S". function of r
are reported in Table 1.

.4,

Figure 5 Evolution of the Stouhal number S versus He for r=0.8, its the lottlogencous case.
Ihe continuous line indicates the bestn power law to the data (S - RCM1 ý, and the inciusior. peesexits a typical

velocity spccrruin for Re=3750, thc low and laigi frequency mode are indicatd in.



r = 0.28 r =0.80
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Figure 6 Fluorescence induced by Jaser side views for r=0.28 (a Re=2950. b: Re--4000, c: R=-320)
and for i=0.8 (d : Re=1500, e: Re=1800, f: Re=1400)

t Stratified confluratgion:
Figure 6 ilustrates the progressive disparition of the. shedding of large scale vortices as the
stratific;tion effects increase (F decreases). This disparition occurs at a critical Froude
numiber Fc depending only on r as sooi as Re>R%. For r=0.28 F, is close to 4 (figures 6.b
and 6.c) whereas it gets close to 1.2 for r=O.8 (figures 6.e and 6.A). On figure 7 we have
reported the evolution of the Strouhal number S of the VS instability as a function of rF for
several aspect ratios (r=0.28, 0.8 and 1.12). Values of S were obtained either from
visualisatioais or from both conductivity probe and velocity measurements. In addition, for
each aspect ratio r up to three sets corresponding to three different Re(F=I) have been
collected, We note, from figure 7, that S decreases with F following an 1/rF law before
stabilising at its inutral value. This result demonstrates that the VS mode frequency is
controlled by stratification effects until it reaches its asymptotic value. We also see on
figure 7 and table 1 that the critical value F, equals I/r and coincides with the limit of the
saturated lee wavc rcgime. ThIe slight dispersion in the value of S, for given F and r, is

partly due to variations in Reynolds rnumber. This demonstrates the weak importance of Re
as soon as the VS mode is establilhed (Re > Re,)

I
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Figure 7: Stroubal number S of the low frequency mode for t-=0.28, 0.8 and 1.12

:;- 100±0 ________7o ______ ______

el'ff A. 2001% 1200-10 1300±10% 1000±10%7

0.85±5% 0.55±L5% 0.55±t5% 0.4:t5%

M U' ±% : %1.2-±5% 0.8t5%___

1.1t 5%.15% 0.96 ±5% 1.01±5%
Table 1

4. The SLW regime:

For this regime the lee wave amplitude reaches its maximum and hence, the turbulent wake
is suppressed as clearly demonstrated on figures 6.c and 6.f. For r=0.8 we note on figure
6Xf, the generation of a three-dimensional steady isolated bubble under the first crest of the
lee wave. For the gentle model (r=0.28) such a phenomenon is not observed because, may
be, the wave energy propagates nearly vertically.

5. The 2D regime:

a IF =0.30 b LF 0.77

Figure 8 :Top view particle streak photographs for r=0.8 (Re(1)=1300)
((lie flow is from left to right)



When F decreases below 0.7, the lee wave amplitude decreases and the fluid layer that goes
around the obstacle, instead cf passing over it, starts being animated by quasi-two
dimensional motions. An attached pair of vortices appears in the lee side of the topography
(figure 8.a). For the large aspect ratio model (r=0.8), this 2D layer is topped by a
moustache-like shaped rollers visible on the top view 8.b. This complex structure,
described by Sysoeva and Chashechkin (1986), lives under the first crest of the lee wave
and therefore exhibits a similar shape as the isophase 2;r. For the small aspect ratio model
(r=0.28), rollers are no more present, probably on the account of the rapid drop in the lee
wave amplitude atod on the nearly vertical propagation of the wave energy observed in this
casr.
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Figure 9 (respectively 10 and 11) presents measurements of the distance x/L between the
centre of the 2D vortex couple and the relief axis for r=1.12, r=0.8 and r=0.28 (respectively
the width /lL and the velocity u'IU of the associated adverse flow). For both the distance
x/L and the width b/L, results are in good agreement with the predictions of the Inviscid
numerical simulations of Smolarkiewicz and Rotunno (1989). On the contrary, the adverse
flow amplitudes reported by Smolarkiewicz and Rotunno, are approximately five times
greater than the experimental ones. This discrepancy is certainly due to the friction at the
wall which is not taken into account in the inviscid numerical model. From the relative
agreement between the simulations and the present experiments, one would be tempted to
conclude that, the vorticity is mainly generated by the baroclinic mechanism introduced by
Smolarkiewicz and Rotunno rather than by separation of the boundary layer on the
topography. This issue deserve further investigations.
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ON THE AMPLIFICATION OF INTERNAL-WAVE SURFACE
MANIFESTATIONS DUE TO SUBSURFACE SHEAR CURRENT
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P.P.Shirshov Institute of Oceanology Russian Academy of Sciences,
23 Krasikov str., 117218 Moscow, Russia

1.Introduction. Manifestations of internal waves on the sea surface were
the subject of intensive studies in the last two decades reaching their peak
in the mid of eighties. Until now internal waves remain the only "internal"
process having numerous and well documented observations of its surface
manifestations and, to our opinion, all the links between surface and interior
merit primary attention. Despite great number of works the understanding of
physics of these phenomena is still far from being complete. A good and still
relevant overview of the situation in the field gives the book "Effect of
large-scale internal waves on the sea swface". We summarize the present
state of knowledge as briefly as possible, to reduce the conclusions relevant
in our context to just the two points. First, we note that internal waves
manifest themselves creating nonuniformity of some "end", i.e. directly
observable, properties of the sea surface, which are, as a rule, specific for
the situation and the way of observation. To give an idea we list just some of
such "end" properties: albedo, colour, breaking wave probability, density of
weeds or melting ice, temperature, scattering characteristics in different
bands etc. As a rule these "end" properties are related through a cascade of
different physical mechanisms with the "primary" distortions of the surface
parameters created by internal wave. These mechanisms are numerous and the
cascades could include many links, but, we would like to stress this point,
most of the cascades are initiated by the nonunifcrmities of the horizontal
velocity on the surface caused by internal waves as the main "primary" factor.
The second major conclusion that can be derived basing on the accumulated
experience of previous studies, being roughly formulated, is: if there is a
strong "primary signal" due to internal wave in terms of horizontal velocity,
then there are noticeable manifestations in various fields.

In this work we focus our attention on a mechanism providing amplification
of the surface velocity variations. We shall take into account existence of
mean shear current and its boundary-layer-type vertical structure. The
currents of this type are caused by the wind and represent generic feature of
the upper ocean. We shall show that the presence of subsurface shear currents
often results in considerable amplification of surface manifestations.

2.Basic equations and preliminary assumptions. We shall study a linear
internal wave dynamics in an inviscid, incompressible, horizontally
homoge-neous, but vertically stratified fluid in presence of a steady parallel
vertically sheared flow with basic velocity distribution U = {U(z),O,O). The
x-axis of the chosen coordinate frame is oriented along the current while
z-axis is directed vertically upward. The equilibrium fluid density p (z)
being an arbitrary function of z at the depth is supposed to be constant, say
p , near the surface and to form so-called 'mixed' layer of the depth D. The
rgan current is assumed to be localized in the thin layer with typical

thickness h rear the surface and to be zero outside, h presumed to be smaller
than D.

The set of nondimensional equations governing the linear evolution of
small perturbations is standard: the Euler, mass conservation and incompressi-
bility equations

(a + U.V)u + wU' + gpz + poVp * 0 (2.1a)
0



ap + wpo = 0 (2.1b)
0

V-u = 0 (2.1c)

where g is gravity acceleration, z is an unit vertical vector, prime denotes
the derivative with respect to z and u = (u,v,wI, p, p are the perturbation
velocity, pressure and density correspondingly, their scales being characte-
ristic speed U , typical wavelength L and the mixed layer fluid density p
Being interested in linear dynamics, we perform Fourier trnsform of ?e
perturbation wave field components with respect to the homogeneous horizontal
coordinates and time

+00

f(x,y,z,r) = f(ok,z) exp[i(k-r - cot)) dkdco (2.2)

and study each Fourier-component separately. The elimination of pressure and
density from (2.1) leads to the well-known Taylor-Goldstein equation (see e.g.
(LeBlond & Mysak 1979) for the vertical velocity (the sign A is omitted
hereinafter)

(o) - U.k)2 w" + [(Co - U.k)U"-k + (N2 
- (w - U-k)2 )k2 ]w = 0 (2.3)

where N2 (z) = .gpop,. is the square of Brunt-Vaisald frequency, and k = IkI.

The proper boundary conditions at the bottom z = -H and at the surface are

wIHOI Wj =O, (2.4)

the latter is so-called 'rigid lid' approximation.
We shall be interested in the evolution of internal waves long in

comparison with the mean current typical thickness h, so that the quotient
hh -'- (2.5)

forms a small parameter. Obviously, dispersion and other essential characte-
ristics of long internal waves weakly depend on the fine structure of
subsurface current. So to facilitate our analysis we choose the simplest but
still relevant form of the mean-cui-rent-velocity profile

I1+ -Z: Zz
U()= (2.6)

3.Asymptotic analysis of mode distortion. The chosen model of the mean
current characterized by a vorticity jump at z = -E implies that mode function
w(z) is to obey to special conditions at that levei. These could be received
by integrating (2.3) through the level z =-F in a standard fashion and
represent in fact the conditions of continuity of a 'fluid line' displacement
and pressure

w +0= -E+0 (3.1a)
-k Z=.0

(Ck- U'k)w' + U'.k w =0 (3.1 b)
Z=-E-0



where the notation z = -e ± 0 denotes the limits of the expressions while z
tends to -e from above and from below correspondingly. Thus the ocean model to
study consists of three different layers, and (2.3) should be solved in each
of these independently and then the solutions are to be matched at the
boundaries using (3.1) or similar conditions. The mean current being absent at
the depth, (2.3) becomes the standard equation for internal wave mode function
which can be solved by usual methods for any given stratification. We are not
interesting in an analysis of particular models, we shall focus our attention
on consideration of the general problem of perturbation of internal wave
characteristics by a thn subsurface shear current.

Both in moving and resting parts of the mixed layer Brant-Viismi
frequency N(z) is assumed to be identically zero as well as the second
derivative of the mean current velocity (2.6), (2.3) can be solved explicitly
to yield the depth dependence of the mode function w(z) depth dependence

w = A sh{kz} (3.2a)

in the subsurface layer and

w = B sh(kz} + D chfkz} (3.2b)

in the still part of the mixed layer. The solution (3.2a) is chosen to satisfy
the boundary condition (2.4) at the surface. We note that coefficients B
and D depend on the wave frequency co and wave vector k, the explicit form of
the dependence is found by matching (3.2b) with the solution of (2.3) hi the
stratified layer.

Matching solutions in moving and resting parts of mixed layer by substitu-
ting (3.2a) and (3.2b) into (3.1) we receive the set of equations

A sh(Ek} = B sh(Ek) - D ch{ik} (3.3a)

(cok ch(Fek) - v-k sh (ek)J A = w~k (Bch(e-k) - D sh(ek}3 (3.3b)

which after elimination of A yields a required dispersion equation for
the internal wave mode

(w - v.k thIek-)(B sh(Ek- ch(ek) cu sh(Ek) (B - D thek)3) (3.4)

herein v is the mean flow nondimensional velocity at the surface z = 0, its
absolute value being unity.

We now recall that nondimensional thickness e of the mixed layer moving
part was supposed to be much smaller than unity and use it as a small
parameter while looking for solutions of (3.4) in the form of asymptotic
series in powers of e

C0 = W0 + C + ... (3.5)

Being the functions of wave frequency (o the coefficients 3 and D should be
expanded in corresponding Taylor power series as well as hyperbolic functions.
Performing the necessary calculations we obtain in the main order in

(Wo - v.k) D(%ok) = 0 (3.6)

Each multiplier in (3.6) taken to be zero represents a dispersion relation in
itself. The roots (0f" of the equation

0
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D(Conk) = 0 (3.7)

correspond to the internal wave modes originating from the stratified thick
layer and are not affected by the subsurface shear current. The additional
eigenvalue

S= vYk (3.8)
0

corresponds to the pure vortical mode owing its existence to the jump in the
background vorticity field supplied by the shear current. The celerity of that
mode in this order of approximation equals to the projection of the mean
current surface velocity on the direction of its propagation.

Effect of subsurface current on the internal wave modes first manifests in
the next order in F. Performing the necessary calculations and taking into
account the results (3.7), (3.8) we receive the first-order correction to the
internal wave frequency

= B aD v.k (3.9)
4 (,n v.k

0 0

The mode function w(z) in the moving part of mixed layer corresponding to the
eigenfrequency con is readily found to be (the main order in e)

,,n

w = B(wo,k) - sh(kz) (3.10)
0 o' - v~k

0

During deduction of the expressions (3.9), (3.10) we required implicitly that
the characteristic frequencies of internal gravity and vortical modes be of
the same order and not too close to each other, that is, their differences be
of order of unity. The former requirement is valid only when nondimensional
Brunt-Vdisald frequency is of order unity. This being the case, one can
conclude that, though the influence of the subsurface shear current on the
internal wave f'equency is small (of order of E) in comparison with its
undisturbed value, the vertical velocity in the subsurface layer changes
significantly. The analysis performed above is not valid when undisturbed
frequency of vortical mode is too close to that of one of internal gravity
waves. This phenomenon results in mode coalescence and therefore requires
special consideration.

4.Resonant interaction between internal gravity and vortex mode. Whence
the main-order eigenfrequency of vortex mode (3.8) coincides with that of some
internal gravity mode the asymptotic expansion (3.5) is readily seen to become
singular because of the first order eigenfrequency correction being singular.
The phenomenon breaking the asymptotic scheme used above is the linear
resonance of two eigenmodes of the boundary value problem (2.3), (2.4)
occurring at some particular curve in wavevector space k = k, determined from
the dispersion equation

D(ci ,ka) = D(v4kn,kn) = 0 (4.1)

0'

From the main-order analysis it follows that the dispersion surfaces Con= 0(k)
and w = v.k of internal gravity and vortex mode intersect at the curve k = k
and therefore the dispersion equation (3.6) has a double root, It is
well-known that in reality the dispersion curves do not intersect but split
and, either .ýo-called 'change of identities' or linear instability takes

4
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place: anyway, the dispersion in the vicinity of the curve of intersection is
essentially enhanced (Craik 1985). To study the behavioutr of dispersion
surfaces in the small vicinity of the place of intersection one has to resrale
wavevector

k = k" + el/ 2 q (4.2)

and look for a solution of (3.4) in the form of series in powers of 8/12,
rather than in powers of e

C~O = CO n + E 1/2 C + .. (4.3)
0

Substituting (4.2), (4.3) into dispersion equation (3.4) and performing the
same operations as in the previous section we get once a4ain (3.6) which was
presumed to fulfill and an identity in the order of O(e ). But in the order
of O(E) instead of (3.9) we now obtain

a ~ (1 aD

where

aD" aD -D" aD ,3D Bn= B(,n n) (4.5)
a 03 O cO 0' , nk '--- = a -kk °

As eigenfrequency wo can be considered as a function of wavevector k we are
able to modify the second expression in (4.5) as follows (Whitharn 1974)

,9D" aD"n a-o (3D c (4.6)
a ~ ~ ~ ~~0 v-=- -)-3W-*=,a(

where c is the group velocity of the internal wave at the curve of inter-
section! After modification (4.6) the expression (4.4) can be reduced to a
quadratic equation for the correction to the internal wave frequency owing to
the resonant interaction with the vortex mode

Co. - O.(V - C )-q + Cwn k~n - Yq( )n 47

aD "/aco

Its solutions describing the splitting of intersecting dispersion surfaces are
easily found to be

-7 {(v - c,)-q ± [+ + c>)j - 4ow k -/ 12} (4.8)

Whether the resonant interaction leads to linear instability or not is
completely deterrmired by the sign of the value

=B" (49)
o aD '/a8o

independent of the shear flow features. The function J'(m,k) is completely
determined by the internal wave inner characteristics and plays the role of
adiabatic invariant related to the particular wave mode and determining the
sign of wave energy. The linear mode coalescence is unstable when the coupling
modes have different signs of energy and stable otherwise (Cairns 1979). In
our case the instability occurs if only (4.9) has positive sign at the
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resonant curve.
The distortion of mode function w(z) in case of internal wave resonance

with the vortex mode is much stronger than in nonresonant case, To illustrate 4
the statement we use (4.8) and (3.3) and easily obtain in the main order in e
the vertical velocity mode function in the subsurface layer (-e < z < 0)

'(kn) - (joW+ c *q) sh(k`r} (4.10)

The negative power of the small parameter does not mean that vertical velocity
becomes asymptotically large because the value of hyperbolic function in the
upper layer is of order of E. Meanwhile the resonance greatly amplifies
vertical motion in the upper subsurface layer even in case of stable mode
interaction while its influence on the mode function at the depth is still
asymptotically small.

S.Surface manifestations of internal waves. We have already specified in
the introduction that saying 'surface manifestations' we mean horizontal
velocity perturbations at the sea surface. Though amplified in presence of
shear current vertical velocity is still small and almost undetectable in the
subsurface layer, as follows from (3.10), (4.10), becoming zero at the surface
because of the boundary condition (2.4). So we shall analyze the effect of the
mean current on horizontal velocity perturbations caused by the waves. In the
linear approximation the horizontal components can be easily expressed through
the already found vertical velocity by using (2.1). Obviously we are
interested in their values at the surface z = 0. In absence of internal
wave - vortex mode resonance we easily get from (2.1), (3.10) for the desired
components of the perturbation wave field

"uh - - B" (5.1)kBuh -- ," n v.k

where expression (5.1) describes perturbation horizontal velocity field at the
surface while corresponding to the n-th mode of internal waves. In case of
resonance the perturbations of horizontal velocity are amplified significantly
due to linear interaction of modes, the correspondent explicit expressions
derived from (2.1), (4.10) being

u= =- 112 aDD ( + cq) (5.2)

th (ca±b (cL ?I' 2 (52

Both in (5.1) and in (5.2) we used the notations defined in paragraphs 3, 4.
To judge the enhancement of horizontal motion in the subsurface layer produced
by shear current one should compare (5.1), (5.2) with its analogs in absence
of any mean currean. If there were no current, the surface perturbations of
horizontal velocity would be

u" = i k_ Bn 53

For comparison we choose the internal wave mode corresponding to the same
unperturbed eigenfrequency Wo and similarly normalized.

One can readily see from (5.1) - (5.3) that nonuniform horizontal velocity
field created by internal waves are enhanced in a large extent if subsurface
mean current is present, its order of magnitude increasing under resonant
conditions reaching O(r ) in compare with no current case. Henceforth, -the
effect of the thin subsurface current on the internal wave surface
manifestations is significant, being the most intense in case of resonance
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between internal wave modes and vortex mode appearing due to current presence.

6.Discussion. The analysis performed above shows that a subsurface shear
current even being localized in the narrow sublayer within the 'mixed' layer
strongly affects internal waves surface manifestations by amplifying greatly
horizontal wave velocities and through them all the "end" observable
characteristics. As such currents are almost always present in the real ocean
environment their influence is one of the most important factors governing the
internal wave manifestations.

We note also that in case we are interested in the manifestations of a
stochastic internal field, we can expect that the resonant harmonics, i.e
those Fourier-components whose celerity equals the flow surface velocity
projection on the direction of wave propagation and thus are in resonance with
the specific vortex mode generated by the mean current shear, will dominate in
the manifestations of the stochastic internal wave field at the surface.

We note that the hypothesis about the key role of vorticity waves as well
as vorricity waves themselves in the context of upper ocean dynamics were
first discussed in (Shrira 1989), but the hypothesis has not been elaborated.

The mechanisms of internal wave amplification considered above do not
exhaust the problem, one of the most interesting in this context questions
remaining open is: whether there is a place for an instability of this shear
current. One might expect existence of internal waves with sign of energy
different from tha. of vortex mode. They would have positive adiabatic
invariant (4.10) and ,heir linear interaction with the latter would lead to an
'nstability, while even more intense process of explosive nonlinear
interaction between internal gravity and vortex waves would likely to be
possible. More specifically the question can be formulated as whether there
are exist some stratification profiles possessing the necessary properties
and, on the other hand, generic enough to merit special study. The only work
the authors are aware of which tracts similar problem is that of Reutov
(1990), where within the simplest two-layer model no unstable linear
interaction was found. The authors own analysis of some simple models, both of
three-layer fluid and of fluid with constant Brunt-V~fisdld frequency, does not
reveal any instability. Thus this question is still open.



REFERENCES

Cairns R.A. 1979 The role of negative energy waves in some instabilities of
parallel flows. J. Fluid Mech., 92, 1 - 14.

Craik A.D.D. 1985 Wave interactions and fluid flows. Cambridge University
Press.

LeBlond P.H. & Mysek L.A. 1979 Waves in the ocean. Elsevier.

Whitharn G.B. 1974 Linear and nonlinear waves. John Wiley & Sons.

Reutov V.P. 1990 The internal wave instability in the su-atified fluid with a
near-surface flow. Izv. AN SSSR Fizika a"m. i okeana, 26, 871 - 877.

Shrira V.I. 1989 On the 'subsurface' waves in the oceanic upper mixed layer.
Doklady AN, 308, p.7 3 2 -7 3 6 .

"Effect of large-scale internal waves on the sea surface" (ed. Pelinovsky
E.N), Institute of Appl. Physics Publishers, Gorky, 1982, 251pp (in Russian).

8
~~AT~Ihj



Interaction and Generation of Waves in a Two-Layer
Fluid Flowing over Uneven Bottom

Mitsuaki FUNAKOSHI

Research Institute for Applied Mechanics, Kyushu University,
Kasuga, Fukuoka, 816, Japan

Abstract. In a two-layer flow over uneven bottox±±, both wave generation by the bottom to-
pography and the resonant interaction between two wave modes are examrined simultaneously.
An evolution equation is derived which describes not only the resonant interaction between
long internal mode and the wave packet of short surface mode, but also the generation of long
"internal mode due to the resonant motion of the fluid relative to the bottom unevenness. The
interactions between the waves trapped by the localized bottom unevenness and steady pro-
gressive waves coming to it are examined numerically on the basis of this equation.

§1. Forced Long-Short Interaction Equation
When a two-layer fluid flows over a localized bottom unevenness of large horizontal

scale at the velocity V which is close to the phase speed c, of the internal mode in
the long-wave limit, long internal-mode waves are generated resonantly ( similarly to
the cases of single-layer fluid''2 ) and continuously stratified fluid3 ) ). Furthermore, if we
assume the existence of the surface mode whose group velocity is close to c., the resonant
interaction between the long internal mode and the packet of the short surface modo `-
possible4 ). Aiming at examining the system with not only the rýe-nznt interaction but
also the resonant generation, we derive, through a reductive perturbation method, the
following 'forced long-short interaction equation' from the basic equations for irrotational
motion of the inviscid fluid, under a few assumptions

iST - iASx - Sxx + SL = 0, LT - ALx - ([SI 2 )x + Hx = 0, (la,b)

where L is proportional to the interface displacement of the long internal mode, whereas
S to the complex amplitude of the short surface-mode wave packet. Also Lt(X) expresses
the bottom unevenness, and A a small difference of V from c,. X is a horizontal coor-
dinate in which the fluid flows from the positive X direction, and T is the time. The
details of the derivation of eq.(Q) are shown in Ref.5.

§2. Steady Trapped Waves
Equation (1) has sclutions corresponding to steady waves trapped by the localized

bottom unevenness. The trapped waves are composed of trapped long waves ( called
TLW from now on ) given by

S = 0, L = (X), (2)
1
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and trapped couplec "•tu caeC.- 0A :ror w.j "L exprqc rr.

k -- . - K ,;. -.T '.

whe,.c " al~d , -A :'- ,:.. :•. .: Z:.- A

p..k . -. .'3

wherr X,, is a cons'aan' an d pnr.- do-nol, dcrf1e:r-trtiýor. Wl••. :eApc to . B,,•:az-

condition t4i and eq 16 ptodue an eigenvalue probhtm rtth tigen:'aue 9 for sprcctird

function H and a•luc .. L~geof;r-ctin f XA) and 0 car. b4. zomputee us;ng a kad of

shooting method';. Then 9t.\X is cooyuted from eq.(,). It should be noted tht there
are generally man,, TMW s iwith different Q ) for each function H and value A

In the computation of TCOW for the symmetric mountain of the shape

H = sech 2X. (7)

in addition to symmetric waves with one or two peaks in f(X), a variety of waves with

many peaks, antisymmetrkc waves, and asymmetric (neither syrmnetric nor antisyminet-

ric) waves were found ( see Ref.5 for the detaiL ). Figures 1 and 2 show examples of the
TCW for A < 0 and A > 0 , respectively. There is also an analytic solution expressed by

S I V -+2 sechXexp{i[- AX -- (1 + ZA')T] L = -2sech 2 X, (8)

if A > -1/2 . This is one of the symmetric TCW.

§3. Steady Progressive Waves over Even.Bottom

Equation (1) has two kinds of steady progressive waves if the bottom is even ("I == 0).

The first wave is a soliton expressed by

1S = V/A 4- P) .sech[. --I -- P -- X 0 )] exp{i[-(A + p)X - (fIT + OI]}, (9)

L .- 22sech 2 [4(X - PT - Xo)],

where P, q, Xo0 and V)0 ire arbitrary real conotnts and ' - 41 - P1/4 + A,/4. This

soliton is a coupled wave which propagates at the velocity P and whose horizontal scale
is characterized by 4-.

2



The second wave is a free long wave ( called FLW from now on ) expressed by

S = 0, L = V(X + AT), (10)

where b is an arbitrary function. This FLW propagates at the velocity -A.

§4. Interactions between Trapped Waves and Progressive Waves
The interactions between the steady progressive waves coming to the localized bot-

tom unevenness and the steady trapped waves are examined for the mountain given
by eq.(7) by solving eq.(1) numerically with a finite-difference method. In discretizing
eq.(1), central difference was used both for time evolution and for spatial variation. The
computational domain wvas usually -75 < X < 75 with a periodic boundary condition.
The spatial spacing AX = 0.05 and the time increment AT = 0.0005 were usually used.
The accuracy of the computation was checked by comparing the results with those for

smaller AX and AT and by calculating the conservat've quantities of eq.(1).
One important point of view in considering the behaviour of waves is the effect of long

waves on the short-wave packet. If we consider the equation iST = -- SL, obtained from
eq.(la) by neglecting the second and third terms, and substitute S =S1 exp(iO) [b is a
real function ] into this equation, we obtain 0xr = Ly. Its left-hand side expresses the
time evolution of the wavenumber of the short wave. Thus, this wavenumber increases in
the X region where Lx > 0. This results in the decrease in the group velocity because of
the convex shape of the dispersion curve of the surface mode. Therefore, the movement
of the short-wave packet to the -X direction is expected. Opposite effect is expected
in the X region where Lx < 0. Therefore, the positive part of L tends to repel the
short-wave packet, whereas the negative part tends to attract it.

Another important point of view is the effect of the mountain on the long wave. If
we consider equation LT = -Hx + ALx , obtained from eq.(lb) by neglecting the third
term, its general solution is L = I1(X)/A+ z(X+AT), where 4 is an arbitrary function
expressing the FLW. Therefore, it is expected that in the absence of the short wave if
A > 0(A < 0) then positive (negative) L is finally generated near the mountain,

Figure 3 shows the evolution of waves in the interaction between the TLW and a
soliton (j) = 4 = 1.0) for A = -- 0.5. Here solid lines denote ISI, and broken lines L. The
lowest solid line in each figure expresses H(.,), and the right-hand side of the mountain
(X > 0) is the upstream side. The disruption of the incident soliton into two solitons
and a positive FLW is found. Near the mountain, a symmetric TCW is gercratcd after
a part of short-wave component of the incident soliton is captured by the negative part
of L through the mechanism described above.

Figure 4 shows the interaction between the symmetric TCW given by eq.(8) and the
FLW expressed by L = -2.5sech 2 (X - 10) for A = 1.0. In this case, all the short wave
is pushed away from the mountain, and the TLW is the final state near the mountain.
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can be explained that the positive part of L generated by the moutain pushes the short
wave away. This repelled short wave couples with the negative part of L and forms 2 or
3 solitons. Figure 5 shows the interaction between the TLW and a soliton (P = 4 = 1.0)
for A = 1.0. Near the mountain, short wave is pushed away and the TLW is the finial
state, as in Fig.4. The incident soliton is reflected at the mountain, and its amplitude
becomes much larger.

Next, in order to examine the dependence of the final state on the initaial state
quantitatively, a few series of computations were carried out. At first, in the initial
condition similar to that for Fig.5, only 4o ( 4 of the incident soliton ) was changed
within the range from 0.8 to 1.2. Although one soliton always exists in the final state of

this case, its behaviour is classified into two quite different ones. That is, for 40 < 1.02, the
reflection and amplification of the soliton are observed as in Fig.5, whereas the incident
soliton passes through the mountain with little deformation for qo Ž 1.04 , as shown in
Fig.6. Figure 7 shows the parameters F and 4 of the final soliton as the functions of 40.
We clearly see the abrupt change of the behaviour when 40 crosses 1.03.

In the next series, for A = -0.3, the interactions between the TLW and a soliton
= 1.0, 4 = 4o) were examined for a variety of 40 values. The TCW's for this A

value are composed of the symmetric mode (expressed by a solid line in Fig.8) and the
antisynunetric mode (a broken line). In the numerical computations, we find the final
state consisting of two solitons and a TCW for almost all the 4o values within the range
0.4 < 4o < 1.7. This final TCW is antisymmetric for 40 5_ 0.8, whereas symmetric for

40 > 0.9 ( an example of the former case is shown in Fig.9 ). Figure 10 shows the pa-
rameters and 4 of the two final solitons and f(0) (for syrrnmtric mode) or f'(0) (for
antisymmetric mode) of the final TCW as functions of Qo. Although the dependence of
these values on 4o is mild for relatively small 4o, complicated dependence is found for
4o > 1.3. Another example of such a complicated dependence on the initial condition is
shown in Fig.11. Here f(0) of the symmetric TCW generated by the interaction between
a soliton (ii = 1.0, 4 = 40, 0.68 5 4o < 1.39) and TOW given by eq.(8) is shown) as a
function of 4o for A = -0.3. The value of f(0) depends on 40 in a complicated way.
Moreover, for special values of 4o such as 0.89 and 1.20, f(0) is almost zero, implying the
generation of the TLW.

§5. Conclusions
The interactions between the waves trapped by the localized bottom unevenness

TCW and TLW ) and the steady progressive waves ( soliton and FLW ) coming to it are
examined numerically on the basis of eq.(1). The results are sumnarized as
(i) Near the rnoutain, the TLW is the final state for A > 0, whereas a TCW is the ainal
state for A < 0 (except for the case of no short wave in the initial statW).

(ii) The amplification, reflection, and disruption of the incident soliton (,ccur in the in-
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teraction.

(iii) The complicated dependence of the final state on the initial state, and the abrupt
change of the final state associated with a small change of the initial st•te can be observed.
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Fig.1 Examples of the TCW for A < 0. (a) A = -1/30, R = 23.5, (b) A = -1/30, Dl
13, (c) A = -1/30, Q = 6, (d) A = --1/30, 0 = 1, (e) A = -1/30, n = 0.7, (f)
A = -3, Ql = 2.2583.

5



(a)0 f 2.0

1 5 00. 
S
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Fig.2 Fxamples oftheTCW for A > 0. (a) A =6, S1 13, (b) A = 0.2, $2 = i, (c)

X = 0.2, Qf = 1.6, (d) A = 3, Q2 = 2.465, (c) A = 6, il = 10, (f) A = 0.2, Q = 3.4, (g)

A 0.2, R = 4.6, (h) A 0.2, P = 15.1. (g) and (h) are symme-tric TCW.
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Fig.3 Interaction between the TLWI Fig.4 Interaction between the

and a soliton (P = 4 = 1.0). A =--0.5. symmetric TOW given by eq.(8)

Solid 'lines denote ISI, broken lines and a FLW. A =1.0.
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Fig.7 Parameters 5 ( o ) and 4C x ) of the 3oliton generated by the interaction
between the TLW and a soiitoa (ý = !.0, 4 4o). A = 1.0. Broken line is ý(= 1.0) of
the incident soliton, dotted-broken line is 4 (4 4o) of tlhe incident soliton.
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4.

STEEPENING OF THE LEADING AND BACK
FACES OF SOLITARY INTERNAL

WAVE-DEPRESSIONS AND ITS CONNECTION
WITH TIDAL CURRENTS

A.N.SEREBRYANY

N.N.Andreev Acoustics Institute, Moscow 117036, Russia

1. Abstract

During internal wave investigation in summer season on the Pacific shelf of Kamchatka,
internal waves deprcssions were recorded as having either steepened forward face or a
steepened back face. It was established that these changes in profile are correlated with
tidal phase. The waves with steepened leading face were most common during flood tide
and the waves with steepened back face dominated during ebb. Significant properties
of observed internal waves are revealed: the higher amplitude of the waves, the smaller
.steepening of face;the wave spreading during ebb are higher than w ives in flood tide.

2. Introduction

Large-amplitude internal waves observed in the sea often show two types of profile asy'm-
metry which may be called vertical (crest-trough) and horizontal (due to difference in the
slope of the leading and following edges) asymmetry [1]. The first type of asymmetry is
attributed to the pycnocline being close to the sea surface or bottom. The second one is

20

30

Figure 1: Typical te1mpje1ra-1t ue 1)1r0(il( anid position of the nieter of \ert ical displacements.



~1

typical for strong nonlinear waves and often precedes the wave breaking. The effect of
horizontal asymmetry in field observations for solitary internal wave elevations manifests
in a unique manner of leading wave face steepening whilc for wave depressions a defi-
nite pattern has not been detected [1,2]. At the same time the laboratory experiments
demonstrate that a shoaling wave depression has only a steepened back face 13,4]. Of
importance of current on the shape of internal waves 'w,. demonstrated in the works [5,6]
on the basis of laboratory experiment and theoretical study. However field investigations
on this question are practically absent. In this paper we present the results of field obser-
vations of internal wave-depressions in the coastal waters where either steepened forward
face or a steepened back face were recorded. Some interesting features of observed waves
including correlations of that profile changes and tidal phase were revealed.

3. Observations

The observations were made on the Pacific shelf of Kamcchatka in front of one of the bays
from anchored research vessel. A distance to the nearest shore was nearly 2 km and depth
of the sea in the place of observation - 40 il. There is a relatively narrow continental shelf
with cross size of 20 km and mean slope of 0.013. The measurements of internal waves
were carried out during 34 hours, the August 20-21, 1983.

Internal waves were measured by means of meter for vertical displacements [7). This
meter consists of two identical distributed temperature sensors each 25 m long, shifted
vertically by 5 m, relative to each other. The meter is deployed vertically in the layer
with thermocline and continuously measures mean temperature and vertical gradient in
the layer and so permits us to obtain the data oni vertical displacements of the interfaces.
Position of the lower end of the meter was monitored by means of pressure sensor. There
was a calm weather during the observations and pressure sensor's readings showed an
absence of any displacements or pollutant oscillations of the meter.

To provide information on currents two current meters with 5- minutes sampling in-
terval were deployed on horizons 1.5 m and 30 m. Temperature distribution with depth
and its variability was measured by means of CTD probe sampling. Vertical tempera-
tore profile in the place of observaLion was characterized with nearly uniform decay of
templerature with depth (mean vertical gradient. was 0.1 (C/ni) except for upper 10 meter

Fig-ure 2: Part of records of the data: (a) vertical displacements; (1)) currents on horizon
'30 in; (c) sea surface,
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Figure :3: Examples of the waves of large amplitude.

subsurface layer with more sharp thermocline difference (see Fig. 1). The surface teni-
perature was 11.5 C and near bottom temperature was 6.5-7 C.. Density stratification was
similar to the temperature distribution with depth.

4. Steepening of front and back faces of internal
waves

Fig. 2 shows part of the record of thermocline vertical displacements together with cur-
rent's data for horizon of 30 m. On this record we can see that there e ist often short
period waves the amplitudes of which is sometimes of significant value.. , the same time
long period oscillations of thermOclnire (tidal periodicity), despite the strong barotropic
tidGe, appear only slightly on the record.

Common notion about the observed short-period internal wave field makes it possible
to calculate the spectrum basing of the record. The spectrum has well pronounced picks
in the ranges near S c/h and 2-;3 c/h the decay law being close to power "'minus two".

During the diurnal observations current, direction significantly varied iI1 time. First
n0orth-west currenLs have dominated. Tlhe west. south-east and south currents have taken
place. The data show that the ellipse of tidal currents in this place is very distorted.
Currents are as high 0.2.5 m/s (mean value of 0.10 - 0.1.5 m/s).

Short period waves often emerging on thermocline resulted in its vertical displacements
Up to .5-S In. The waves observed have both trains from several waves and solitary. Some

:3
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of the examples of observed waves are shown on Fig.3. Calculating number of intense
waves on the diurnal record was done and their parameters - heights and periods were
obtained and summarized in the table. Periods of the waves load between 5 and 2:3
minutes,heights are in the range from 2.3 to S.3 meters. Because the measurements were
done in one "point" we do not have data on the length of waves and the directions of their
propagation. However, on the assumption of well known properties of internal waves on a
shelf we can suppose with much Probability that observed internal waves being travelling
towards the shore. Indirect evidence of this circumstance, through visual observation of
the sea surface with appropriately oriented slick stripes, were obtained.

Table 1. Parameters of internal waves. * - steepness is given hi relative units:

AT Time, Period, Height, Front's* Back's* Relative
hour rMin m steepness steepness steepness

1 11.30 23 4.0 0.2 0.23 0.87
2 13.10 10 2.8 0.43 0.2.5 1.72
"2' 13.21 13 3.:3 0.35 0.2.5 1.40
3 17.00 8.5 3.0 0.45 0.28 1.61
3' 17.07 5.5 4.8 1.38 [.10 1.25
4 19..55 14.5 3.:3 0.44 0.33 1.333
5 22.16 13 3.5 0.18 0.47 0.38
6 23.27 9 2.3 0.21 0.41 0.51
6' 23.13 14 2.3 0.23 0.15 1.53
7 23.54 10 5.0 0.63 0.43 1.47
8 0.30 10 4.T 0.31 0.53 0.58
9 1.16 8.5 4.0 0.37 0.56 0.66
9' 1.25 8.3 .1.) 0.61 0.82 0.74
10 3.48 5.0 5.8 0.83 0.83 1.00
11 4.55 14 8.3 0.64 0.71 0.90
12 .5.58 14 4.2 0.31 0.20 1.55
13 10.28 13 5.2 0.51 0.66 0.77
14 12.42 11 6.3 0.84 0.67 1.25
15 13.03 9 7.3 0.71 1.21 0.59

Of interest are two solitary waves separated by one hour interval (their heights are 5.8
m and 8.3 in. and periods are :5 and 14 minutes. respectively). There is a most striking
characteristic shape of depressions.peculiar practically to all observed waves with higher
a bove the mean value of amplitude. This is the well kuown nonlinearity effect of internal
waves which takes place when wave guide is being close to the sea. surface. In this case
internal waves have shape with sharp niarrow troughs and flattened crests. The observed
stratification of environment has resuLhed in the manifestation of it.: nonlinearity effect.

Besides the vertical asymmetry. clear manifestation of horizontal asymmetry of inter-
nal wave profiles was revealed when slopes of front and back faces are different (See Fig.
4). As a measure of horizontal asymnietry of a. wave we will take the relation of the front's
slope to the back's slope. designate it as . Thus, for wave with symmetrical profile this
paranietLer equal to 1. At more steel) Iront slope.. -% is larger then 1. and at more flattened
one. - is smaller then 1. Data on the steepness for 19 individual waves observed during
dirnial n period are suniniarized ii the table. From this data we notic' that the parain't,'4
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Figure 4: Effect of horizontal asymmetry in internal waves. Mirrdr mappings of the back
faces of a wave. relative to vertical axis. passing through deepest point of the troughs
are shown (dotted line) to produce a clearer illustration of the effect.

of relative steepening . is lying ini the range Irom 0.38 to 1.64. Among the total of 19

waves only one wave has symmetrical profile, a number of the waves with steepened front
and back faces is nearly equal (9 and 10 waves, respectively). It is iný eresting to note that
the horizontal asymmetry. as a rule, is retained for all waves compling the trains.

5. Correlation between heights and horizontal asym-
metry of the waves

Let us compare the paramneters of observed waves wit h their parameters of relative steep-
ening. First we will test the dependence between period and asi'inietrv of the waves.
Fig. Sa shows the appropriate results, From this figure it is evident that horizontal asvm-
metry is inherent practically for the waves of all considered periods. \WVhen we compare
the heights of observed waves with parameter of horizontal asymmetry, we find an in-
teresting tendency. This tendency is as follows: the waves of largest heights have more
symmetrical profile while the lowest waves have more horizontal asymmetrical profiles
(See Fig. 5b). This law takes place for both waves with steepened front and waves with
flattened one. On the basis of the data observed the linear regression lines are plotted.
'They ale as follows: .4 = 1.8.5 + 4.46-;. (for - > I ) and A - 12.75 6.08; (for - < 1 ).
The appropriate correlation coeflicicents are , = -0.84 anld r.A_. = 0.48 . From whence
01oC cani See tha-t for the case of '-steep back slope" the correlation betweeln heights and
asymmetry is better than for the case of -'steep front slope". To surninarize, the effect of
horizontal asynmmetry takes place to a grater extent for the waves of relative low heights.
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Figure 5: Data on periods (T) and heights (A) of the internal waves as function of
relative steepness of waves
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Figure 6: Thc distributions of and .4 in time.

6. Connection of effect of horizontal asymmetry with

tidal phase

It is interesting to follow how effect of horizontal asymmetry is varied in time and whether
there is correlations between it and tidal phase. To clear up this questions, we have plotted
the graphical representation in whicl on the one axis we laid off time and on the other
axis - relative steepening of the wavc. ['ro l-ig. (in it is seen that with the increasing of
water level (during flood tide), up to high water time, the waves with steepened front are
observed. During period of high water the waves of both type asymmetry were marked.
During ebb phase after midnight the wav" with steepened back faces dominated. Thus
we can see the correlation between horizontal asymmetry of the waves and tidal phase.
In this connection it is interesting to test whether there is also any dependence between
heights of the waves and tidal phase as well. From data of Fig. 61) it is seen that internal
waves during ebb are higher by amplitude then during flood tide. Thus we can see the
tendency for waves with opposite Lo cu'ent direction to have higher amplitudes. This
feature resembles the situation with phort- eriod internal waves in the open ocean where
the similar dependence oftenuis ilHil'luCested [S].



7. Discussion and conclusions

So, the scenario observed is roughly as follows. Against the background of hydrology with
relatively weak vertical temperature and density gradients, short-period ;-seraal waves
are moving from ol)en sea towards the shore. Due to picnociine being closed .o surface
the travelling internal waves have form of depressions. The most striking shape of wave-
depressions is manifested for waves with largest amplitudes. Propagation of internal wave-
is taking place against the background of alternative current (tidal) which for some time
is co-directional with waves and for some time is opposite to them. As our observations
show, there is an apparent effect of horizontal asymmetry of the wave profile which is
correlated with tidal phase and consequently with directions of the tidal currents.

ft is known that without background current when internal wave is moving to inclined
bottom the internal wave profile is distorted so that bark face of the wave becomes steeper.

Accordingly the front of the wave becomes milder and becomes roughly parallel to the
inclined bottom [:3.4]. This specific changing of wave profie is due to the fact that durilg
the shoaling of the wave the reverse flow in the lower layer is accelerating so as to conserve
mass [4]. Besides the laboratory experiments this effect was found in the field observations
of tidal internal waves on shelf [9].

Perhaps in our case the effect connected with the influence of inclined bottom play
a certain role as well. but the effect due to strong shear tidal current seems to shadow
it. Stable connection between steepening of fron, arid back faces of the waves and ebb
or flood tide, as well as near equal number of observed waves with steepening front and
back faces, pointed to the effect, of alternative tidal current is being dominated.

It is well known (see for example comprehensive observations[10] ) that tidal currents
are mostly the shear currents. having a maximum magnitude in near-surface layer and

periodically changing of its cross-shore component from on-shore to off-shore direction.
F'or short-period internal waves there occurs their own system of orbital wave currents
(shear current). Background tidal current interacting with orbital currents may result
in a reducing the reversal current of the wave in bottom layer (during flood tide) or its
strengthening in ebb. It results in the profile of the wave being deformed so that in the
first, case front edge of the wave will be steeper. and in the second case the back edge
will be steeper. Flhe fact that waves of higher amplitudes are less prone to ionlinear

profile distortions is indirect evidence of the comnections between effect of horizontal
asymmetry and alternative background currents. Since orbita.l currents of internal waves

are proportional to their amplitude. iii case off larger waves, background current plays a
smaller role than in case of lower wvaves. Thus we can explain the fact that the biggest of
the waves observed had nearly symmetrical profile.

The main purpose of our paper was to establish the factual data on the horizoutal
asynumetry effect of internal waves and give some l)reliminary speculations on its origin.
\WVe have pllan to do more deep interprctation in the close future.
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Capillary-gravity interfacial waves
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Abstract

This paper deals with capillary-gravity waves at the inteifuz between two fluids of differing densities.
Several types of waves are conside% 2d: space- and time-periodic waves and travelling waves. For space-
and time-periodic wsves, a weakly nonlinear analysis to third order provides the normal form that relates

the wave frequency with the ampnitude. The special case of internal resonance between the fundamental

and its second harmonic is also considered. It is shown that an unurual type of periodic waves, which are

neither traveling nor standing waves, may exist. For traveUing waves, an analysis based on a formulation
of the problem as a dynamical system in space shows that there is a critical density ratio which strongly
affects the branching behavior of periodic wavei and which determines the type of solitary waves which

bifurcte at the minimum of the dispersion curve.

1 Introduction

The problem of interfacial waves has not been studied as much as the problem of water
waves. Although many results on water waves can be extended to interfacial waves without
leading to sigaificant qualitative differences, there are some wave phenomena for which
the density ratio can play an important role. In particular, it is shown that certain types
of solitary waves ("dark" solitons), which are not possible in the context of water waves,
are possible in the context of interfacial waves. Following a brief review of the formulation
of the problem of interfacial waves, the paper is then divided into two main parts. The
first part is devoted tc the study of space- and time-periodic waves. The analysis makes
use of the temporal Hamiltonian structure of the problem. The second part is devoted to
the study of travelling waves. The analysis is based on a formulation of the problem as a
dynamical system in space. Bifurcations of solitary waves are studied.

2 The physical problem

The propagation of capillarity-gravity waves at the interface between two horizontal lay-
ers of perfect fluids with constant densities p and p' is considered. The layers are two-
dimensional and semi-infinite in the vertical direction. The flow is supposed to be irrota-
tional in each layer. The physical quantities relative to the upper layer are denoted with
the symbol '. The coordinates are x in the horizontal direction and y along the vertical
direction, with y = 0 representing the interfacc at rest. The interface is described by
y = i7(x, t). The acceleration due to gravity is g and the interfacial tension coefficient is
7'. The velocity componerts are u and v. Velocity potentials •5 and 4/ are introduced in
each fluid. The governing e -,uations are given by

V24, = 0 V 2  = 0, (2.1)
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subject to the conditions

lim IV = 0, lirn IVO'= O. (2.2)
V -400 1-4+00

At the interface y = tj(X, t), the kinematic condition is given by

n , = 0(y) - ? ='(y) - - ?7A(z), (2.3)

and the dynamic condition by

P(•O, + 1(u, + v2)) -p' ( + (u, 2 + v,)) + g(p - p')q - - 0, (2.4)

where 1(.) = €•.(, ut), u = (x, n,t), v = V(X, , t).

So fax, no assumption has been made on the type of solutions we are looking for.
The problem depends of course on the horizontal variable x and on time t. It is a
nonlinear problem, the nonlinearities being present not in the governing equations but
in the boundary conditions at the interface. Existence theorems are extremely difficult
to obtain. The analysis of the problem is simpleL if one considers solutions in the form
of travelling waves, the "trick" being that such solutions are steady solutions in a frame
of reference moving with the wave. Another simplification of the general time-dependent
problem consisis in looking for solutions which are periodic (in space or in time or in
both) or for solutions which are slow modulations (in space or in time or in both) of the
previous solutions. In the sequel, different formulations will be used to study different
types of wave phenomena: a temporal Hamiltonian formulation and a dynamical system
formulation.

The following dimensionless numbers will be used in the analysis:

7T Tk2  p' p - p'
c =-c-R P--, = -F, (2.5)

where k is the wave number and c the wave speed.

3 Temporal Hamiltonian formulation

The probklm (2.1)-(2.4) has a temporal Hamiltonian formulation given by

- H(C, •) 6kf(¢, ,)
=I- = (3.1)

with the derivatives 6 as variational derivatives. The canonical variable ( in (3.1) is equal
to pl, - p'O'. The Hamiltonian H is the sum of kinetic energy K and potential energy V,
which are given by

K J PIV1 2d dX, (3.2)

and

V(7 J2~P-p)q + T (1+ 17. - 1]dx. (3.3)
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If spatial periodicity with wave length L and wave number k = 27r/L is assumed in the
x-direction, the integrals over x are from 0 to L. If solitary waves are considered, the
integrals over x are from -0o to +oo. In (3.2), the kinetic energy is given as a function of
0 and 0'. To prove that 0 and 0' only appear in tie combination C can be done by using
the calculus of variations. That is, K(C, rj) is obtained as the minimum of K(O, 4/, -q) with
Tl fixed on the constant set pO - p* = C.

The above Hamiiltonian formulation has an equivalent Lagrangian formulation: the
set of equations (3.1) can be recovered from setting the first variation of

C f (K(Vj, Vj) - V(7)) dt (3.4)

equal to zero. The link between t and C is provided by

6K(C, v) (3.5)

With the restriction to space- and time-periodic functions, the canonical variables
i?(x, t) aud C(x, t) can be formally identified with a double Fourier series expansion in x
and in t. For computational purposes, the Fourier series are restricted to N terms. In the
noaresonant case, the linearization of the problem gives profiles of the type

il= Re Ae + B ej(3.6)

where w is the frequency of the wave. The dimensionless average 7 of ' over a time
period is

7i= 2.(I+T)El+Q [E2+ aM,] +..., (3.7)

where
E= IA1l2 + jBI 2,, M, = 1 BI - 1A11,

and where c and 3 depend on the parameters r and V. The normal form, truncated at
order three, is

(W2 -- 0(1 + r)) A, - (aE, - PMI)A = 0,
(w2 - e(I + r)) B, - (aEi + PM1)B1  = 0.

In the case of the 1:2 resonance, which occurs when r is close to 1/2, the linearisation
of the problem gives a profile of the type

1 = e [Ale-i(w -) + Bje-'(w"-k) + A2e-'(2w-•2kx)+ B2 e-i(2wt+2kx)]. (3.9)

The dimensionless average W of H over a period is

N = 2e(1 + T)E1 + 2 e(l + 4T)E 2 + 4r. 2

+ e [a1E1 + 311M2 + C122E2 + ,f2 + 2al 2EAE 2 + 23 12MIM 2 ] +... ,(3.10)

where
E2 = JA21' + JB21', M2 = -B 21' -IA21',

S = A•'T + VIA 2 + B•'f + Yj'B 2 ,
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and where aqj and foij depend oan the parameters r and L. The normal form, tUuncated at
order three, is

(w12 - a(l + i-)) A. - w2 4T-A2 - 2QA1 (aiEi - /h1 M1 + ac 2E2 - .l%2M 2) = 0.

(W 2_ Al~ + I-)) B eW- f2 B 2 - 2',B 1 (aIIEI + ,P11MI + C112E2 +,61 2M2 ) = 0,

( l- + 4r)) A2 - - 20 A2 (al2EI - fl/2MI + a 2 2 EZ - A 2M 2) = 3,

(2W2 - opl + 4.r)) B2 _ 1, 2B2 9B 2 (er 2Es +P131 M1 + *22E 2 +0 2M 2 ) = 0.

(3.11)

The symmetries of the normal forms (3.8) and (3.11) are natural consequences of the
symmetries of the full problem.

The solutions of (3.8) are of two types: progressive waves (one of the amplitudes
A1 or B1 is zero) or sbanding waves (the amptltudes A, and B, are equal in magnitude).
The solutions of (3.11) are of five types: pure progressive waves (both amplitudes A,
and B, are zero, and one of the amplitudes A2 or B 2 is zero), pure standing waves (both
amplitudes A1 and B1 are zero, and the amplitudes A2 and B2 are equal in magnitude),
travelling Wilton ripples (both amplitudes A1 and A2 or B , and B2 are zero), standing
Wilton ripples (the amplitudes A, and B, as well as A2 and B2 are equal in magnitude),
mixed waves (one of the amplitudes A, or B, is zero). The profile of the mixed waves is
for example

for ex m leI e [A je -'(w t ký) + A 2 e -i( wI2 A'r2 ) + B 2e -i( 2t+2A &x)] (3.12)

So far, three-mode mixed waves have been studied only theoretically. Such waves axe
generic in the presence of a two-mode interaction and they persist at any order of the
normal-form truncation. A proof of existence of such waves for the full problem remains
an open problem (like the proof of existence of standing waves for that matter!). Numer-
ical solutions for such waves would be a first step towards a better description of their
nature. What the weakly analysis suggests is that three-mode mixed waves arise from the
superposition of a travelling Wilton ripple in one direction and of a pure travelling wave
in the opposite direction. One may alternatively view such waves as travelling waves in
which the fundamental excites not only the secord harmonic in the same direction (as
in the classical 1:2 resonance for travelling waves) but also the second harmonic in the
opposite direction. Branches of three-mode mixed waves connect branches of travelling
waves with branches of standing waves. For more details, see the papers Christodoulides
& Dias (1994) and Dias & Bridges (1994).

4 Dynamical system formulation

The above analysis dealt with waves which are periodic in time and in space. The analysis
below is restricted to waves travelling uniformly with a constant speed c. Mielke (1991)
proposed a dynamical system formulation of the problem (2.1)-(2.4) in a frame of reference
moving with the wave with x and the strea-mfunction io as independent variables. With
such a formulation, the center manifold theorem can be used to reduce the problem to a
set of ordinary differential equations. We use T/pc2 as unit length and c as unit velocity.

The dispersion relation for linearized waves is given by

k - (1 -- R)k + a(1 - R) = 0, (4.1)
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where k is the dimensionless wavenumber. For given ralues of R between 0 and I and of
a larger than 0, equation (4.1) can hav. zero, one, or two real roots. We concentrate here
on the case where equation (4.1) has a double root in k, that :s to say when

Q = ac = 4(I + R)2 -- •k= +4( - R)'2

For a below ar, (4.1) has two real roots k1 and k2 and there are two branches of periodic
waves bifurcating from the trivial solution. For a above a,, (4.1) has two complex roots.
When a is equal to a., branches of solitary waves bifurcate from the trivial solution.

From the dynamical systemn formulation due to Mielke, one can use the center man-
ifold theorem (which is esbentially a separation of variables) to show that all bounded
solutions in a neighborhood of the 1:1 resonance (a near a,) can be written as

w(x) = A(x)O+ +3() + ABx)'s, + B(-r')' pg" + higher order terms, (4.2)

where T

W = [I(UI + '2 -1), •(Uz--. v-),',V1.j (4.3)

and where y (resp. W) is an eigenvector (resp. a generalized eigenvector) corresponding
to the double root k• of (4.1). The bifurcation parameter p is equal to a, - a. The
amplitudes A and B, which only depend on the spatial variable x, are complex. One
easily finds thwi.

+ ~i+W2 ie(I+-R),P/2, e02+JZ)012, ie-(WI+)#/ 2, iJT 2.

• = [i oCe~n~)t/2, Cbe•+R)*/2, j tce-+Tt/2, _¢tci+R)¢/, o].
The normal form of the dynamfical system, which ahows to express the higher order

terms in (4.2) in a rather simple form, is
ikA + B + iAP (g; A 2, i(A -R)) ,' A-

B=. ik 0 B + iBP (•; j',i i(A --XB)) + AQ( ;A 1, i(A-

where P and Q axe real polynomials

P(,; U, V) = -pip, .4. ý' 2 + jV + O(I,,I + IUl + IVD, (4.5)
Q(; UV) = -_1p+ qfU+ q3V + o(1jj + Il + IV) 2 .

The coefficients pi and q1, which can be easily computed from (4.1), are found to
be p, := 0 and q, = 1 - R. The other coefficients (see details in Dias & booss (1993) on
how to compute them) require more work. The expression for q2 is

11 - 42R + 11R2
8(1 +11) (4.6)

There is a critical value R = R, = (21 - 8f5A)/ii of the density ratio for which the
coefficient q2 is zero. A precise study of the solutions in a neighborhood of that critical
value requires the computation of higher order terms and will be the subject of future
work. Here we consider the cases R > R, and R < 1, with R not too close to ,4.

.1
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S. . . . . . . . .. . . . .. . . . ... .....



The next step is to find the solutions of the normal form. The analysis is greatly
simplified by using the fact that system (4.4) is integrable, with integrals

K=Ii(ATB-74B) and H=1IB 12 -_ Q(Q,;s, K) ds. (4.7)

Bridges et al. (1994) showed that these integral axe closely related to the energy flux and
the momentum flux of the waves. A complete analysis of (4.4) was provided by Iooss
& PNrou~me (1993). The sign of the coefficient q2 turns out to play a key role in the
structure of the solutions.

Small density ratio

This case corresponds to R < R. (that is to say q2 < 0). When ju > 0, the solutions
are periodic or quasi-periodic. When p < 0, the solutions are periodic, quasi-periodic or
homoclinic. The homoclinic solutions correspond to solitary waves of the type shown in
figure 1. They look like wave packets.

4A-

.2 .2

0 0.

-. 2 -. 2

- 4 I I i .I I I 1 .I I. 1 I I I I, I

-60 -40 -20 0 20 40 60 -60 -40 -20 0 20 40 6

Figure 1: Two solitary waves bifurcating at the minimum of the dispersion curve When
the density ratio is small
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Density ratio close to one

This case corresponds to R > X? (that is to say q2 > 0). When p > 0, the solutions
are periodic, quasi-periodic or homoclinic. The homoclinc solutions correspond to solitary
waves of the type shown in figure 2. They look like dark solitons. They are connected to
the same periodic wave at plus and minus infinity, with a phase shift. In the central part,
the anplitude is small.

'V

1 k , 1 t I t I I I I I I I , [ t I

-60 -50 -40 -30 -20 10 0 10 20 30 j 50 6V

Figure 2: Solitary wave bifurcating at the minimum of the dispersion curve when the
density ratio is close to one
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TURBULENT MECHANISMS IN STRATIFIED FLUIDS

J. M. REDONDO, M.A. SANCHEZ & I.R. CANTALAPIEDRA
Dept. Fiica Aplicada, Universita* Politdcnica de Catolunya,
J. Girona $1, B5 Campus Nord, Barcelona 08084, Spain.

Absttract. Probability distribution of basic instabilities appearing in stratified flows and point
density fluctuations have been studied. Different patameters of the mixing process have been
changed in the experiments in order to investigate mixng. Detailed flow visualization as well
as point density measurements axe used in zero-mean-flow laboratory experiments such as: Grid-
stirred turbulent mixing across a density interface and bubble induced mixing. The overall mixing
efficiency of the processes depends on the local Richardson as well as on the local vorticity.
Parameter distributions of low and high mixedness corresponding to diferent instabilities are
presented, showing that dipolar vortices, penetrating the interface are the most efficient mixing
instabilities.

Keywords: Stratified flows - Zero-mean-flows - Turbulet mixing

1. Introduction

The range of mixing efficiencies and the related turbulent diffussion coeficients
is very large and its proper parametrization in geophysical flows is important to
model correctly mesoscale flows. See Hopfinger(1987) and Ferna~do (1991) for
discussions on mixing efficiency in stratified flows. We present some results on two
series of experiments on the mixing across a density stratified interface when the
turbulence is produced by a distribution of air bubbles or by grid stirred turbulence.

2. Description of the experhnents

Grid generated turbulence
An experimental apparatus similar to the one described by Turner(1973) was used,
a perspex box of 25.4 x 25.4 in base and 42 cm high with a metal grid made of
square bars of section 1 cm2 and a mesh of 5 can was driven in an oscillatory
motion by a motor coupled to a gear.

Several authors have used this configuration, and the turbulence produced by
the grid depends on the distance from it in the following way, see Fernando(1991)
for further references,

u' = C(M, a)w z-I and I = P(M, a) z where w is frecuency of oscillation of
the grid, z the distance to the grid centerplane, a the amplitude of oscillation, 1,
the integral lengthscale of the turbulence and u' the r.m.s. turbulent velocity, C
and # are functions of the grid char.acterstic:, Which wer• kept constat in the
experiments, ( M = 5cm, a = 1cm ). An interface, produced by overlaying a fresh
layer on a layer of brine of fixed density p + Ap, where the grid was located. The
density interface was placed at diferent distances from the grid, and its evolution

I
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Fig. 1. Experimeutal configurations a) Oscillating grid and tank. b) Bubble Senerated turbulence
on oIeC side of the tank

( entrainment, E = Ve/u' ) measured, conductivity probes and video recordings
were used to investigate mixing across the interface.

Air bubble generated turbulence
A box made of i cm perspex plate, 120 x 15 cm in base and 35 cm in height

was used. The turbulence was produced by means of bubbles generated by a line
source. The bubble generator used in thia experiment consisted of a plastic tube
with holes 1 cm apart drilled on one side placed in the bottom corner of the
tank and spanning the width of the base. A sharp density interface between brine
and fresh water was placed in the center of the fluid column 30 cm deep. The
experiment started injecting air, whicIh formed the line of bubbles rising at their
terminal speed and bega, to mix the two layers from the side. See Redondo and
Cantalapiedra (1993) for further details

3. Deflnitioa of experimental parameters

The density interface and the turbulence produs.ng the mi-xi in the experiments
described here are characterized by means o.^ a local Richardson number Ri =

- where g is gravity, Ap the density step, p the reference density, 1, the
PU

integral lengthscale of the turbulence and u' the r.m.s. turbulent velocity, which
can be related to the air flow or to the oscillating grid characteristics. In both
experiments the mixing could be measured as an entrainment velocity Ve or as
a total m-1in time, T,. when the fluid was homogeneous, as the initial density
interface was placed in the center of the tank of height H, we can relate both
measurements as Tm +

Density fluctuationa and mixing
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Density fluctuations were measured and analized. Probability distributions of
the signals were calculated, P(p), and from them moments of the distribution, Mi
were computed Mi = f' P(p) p' dp , i = 1, 2.

The mean and variance were also calculated as: j - p(t) , and M 2 =

(p) 2p _ being the standard deviation p' = (M 2 )1 /2  . The Skewness

S = r , and the Kurtosis : K = M, were computed for the grid stirred

experiments but not for the non-homogeneous bubble induced mixing ones, due to
the shorter records available.

From the transport equations for velocity and density fluctuations in homoge-
nous turbulence for a zero mean flow we can deduce , using the definition of the
scales L. = (e/N2)1/ 2, as the Ozmidov scale , Lb = w'/N, the buoyancy scale,
in terms of the Brunt-Vaisalla frequency N 2  and Lt, defined below, the
relation

WO'u' 2/2 1ý- = --- ~ ' '-

The interaction between these three scales for different types of instabilties
at different ranges of the Richardson number will control the amount of turbulent

energy that produces mixing. - can be considered as a flux Richardson number

or a wiing efficency Rf -= Ol

Itswiere et.al.(1986) used the definition of the largest turbulent scale of the flow,
in a statistical sense as: Lt = -g which represents a typical vertical distance tray-

elled by fluid particles before eitber returning to their equilibrium level or mixing,
we have LL and Lt teaches a maximum value at a maximum Richardson
number.

The term mixedness, M(z), was used by Koop & Browand(1979) among other
authors and is defined as

2

M(z) = 2 Jo (pb - p)(p- -p(7z) + (p - pg)H(p()- p) dt

where Ho indicates the Heavyside or step function, p(z) is the average density at
height z and t and b indicate top and bottom density values.

An interpretation of this quantity is that near the centre of the interface, at
the average density level (p = j), M(z) measures the degree to which the density
of entrained fluid has been altered by molecular processes. Clearly, if the density
fluctuations consist of random step functions, then M(z)=O. On the other hand, if
there are little fluctuations of the density around p = ;, then M(z)• 1. At vertical
locations other than the centre of the interface M(z) is not bounded by unity.

The mixeduess can also be calculated from the probability distribution functions
P(p). For a density sample consisting of N data points, we can express M(z) as
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N
(P bN [(pb-p~i))H(p(i)-p-z))P~p(i))+(,p~i)-pt)H(-(z)_p(i)).p(pci)]dp,id(z) - (P P)

where p(i) = An + ( f_,) (Pt - Pb) , and dp is the width of the window used. M(z)
and ;f. are inversely related, in fact at the centre of the interface -L = M .

The mixedness has been used to characterize the local instabilities, as well as the
video recordings of the interface, describing the dominant instability type observed
for different parameter ranges.

4. Experimental results

We will only present results for the mixing box experiments, described by sev-
eral authors, Turner(1973), Linden(1975), Hopflnger and Linden (1982), E and
Hopfinger(1986), Fernando(1991) and references therein, The advance of the in-
terface follows an entrainment law of the type F = aRi-" with n between 1 and
7/4, aud most of the times n = 3/2, We varied the distance between the interface
and the grid and found large differences in entrainment for the same Richardson
number and diferent distance.

The appearence of the interface showed that larger, less intense vortices, mixed
relatively less than smaller ones inpinging on the interface, In figure 2 two different
shapes of the interface are shown for low and medium local Ri. For large Ri the
appearence of the interface was almost flat, until a inpinging eddy produced small
scale mixing.

The conductivity probe measurements shown here were taken at the centre of
the interface, this is not easy to define, even if the probe was also videotaped as
the interface advanced, as an example of the convolutions of the interface, shown
in figure 3 for different Ri , both the thickness and the position vary in time.

In figure 4 the position of the interface vs. non dimensional time, tw 3N- 2 is
shown for different experiments with different initial grid-interface distances, D9 .

This non-dimensional time was used by Linden(1975) and shows the entrainment
produced by different vorticities eroding the interface. Note that the average vor-
ticity at the interface may be expressed as • oc z- 2 .

We show the effect of dipolar vortices that inping across the interface, thereby
causing substantial local mixing. In figure 5, point density measurements for two
different Ri show that for low Ri it is common to find sharp variations of density at
the center of the interface, but not for the large Ri indicating that the Mixedness
is high at high Hi, and fluid from the lower layer mixes before reaching the center
of the interface. In figure 6 the values of density r.m.s. fluctuations taken at the
center of the interface (or near the centre, for low Ri ) are shown versus .i in a)
and the values of the Kurthosis are shown in b), for these experiments, z/i - 10.
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Fig. 2. Images of the small scale turbulence at the interface produced by the grid stirred
turbulence a) shows a medium - high Ri experiment and b) a low Ri experiment

Z(c m ) mzi

(cm)
2- -1

0 t(s) 0 t(S) a

Fig. 5. Digitized lines marking a 5% and 95 % light iutensity values in time, for three experiments
a) Low Ri, b) Medium Ri, c) High Ri.

For low Richardson numbers a typical fluctuation (r.m.s.) is a tenth of the
m•a i.m. possible fluctuation, for intermediate Richardson numbers the values of

non-dimensional standard deviation of density, -'-, are as high as 0.5, showing that
there is probably direct contact and mixing between fluid from both layers. The
relationship between r.m.s density values and local mixing can be interpreted as
follows. If the value of the non-dimensional r.m.s. density is 0.5, successive particles
of fluid from the upper and lower layexs arrive to the center of the interface without
mixin and there will be direct contact between fresh and salty fluids.

_ __ _
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Fig. 4. Position of the interface vs. non dimensional time, tw=•"-' diferent sambos indicate

experiments with differentt initial grii-interface distances, D,.

P~i '

9 b)

Fig. 5. Point density measurements -s. time, for experiments with different Ri a) indicates a
low Ri experiment b) a medium Ri.

For higher R1ichardson numbers, p'/Ap is reduced substantially, indicating than
it is rare to have direct entrainment between the two layers. The Kurthosis for
high Ri shows that most of the times the interface center has a well mixed inner
layer and only seldom an energetic instability or eddy can bring in outer unmixed
fluid.

In figure the value of the Mixeduess is plotted against Ri and the nondi-
mensional distance to the grid, low Mixedness values indicate that there is ener-
getic transport across the interface, we indicate with crosses the experiments in
whi•h dipolar vortices were observed penetrating across the interface more than
25 /agreement with the parameter areas of low mixedness. The diferent initial
distances used were D. = 2.2cm, Scm, 7.6cm and 13cm
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Fig. 6. Moments of the density fluctitations vs. Ri, a) nondimensiona1ized r.m.s. b) Kurthosis.
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Fig. 7. Parameter map describing the Mdixedijes as a filction of Ri and non dimnscoionoal distance
from the grid z/t.

S. Discussion and conclusions

Front the density fluctuation mea~surezueuts, or conversely from the inixedness
values in the oscillating grid experiments we see that a region of intermediate Ri
allows higher direct transport of tunmixed fluid across the interface, this mechanism
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should provide higher mixing efficiencies at intermediate Ri showing consistency
with Linden(1979,1980), Rohr et.al (1986) and Redondo(1987), on the other hand
the experiments with bubble generated mixing show mixing efficiencies in agree-
ment with MvIcEwan(1983a,b) and Britter e. al.(1984,1986). Only for very strong
density interfaces a decrease in mixing efficiency with Ri can be appreciated. We
argue that for very high Ri, there is more time where the interface can support
internal waves of higher buoyancy frequency, thus dissipate more energy which
otherwise could produce mixing, This excess energy is disipated away from the
source and subsequently contributes to mixing in the hetereogeneous experiment,
but for the grid-stirred experiments the wave energy excess does not produce sig-
nificant mixing as the energy distribution everywhere at the interface is similar.
The Mixedness values are of help in analizing different parameter ranges, and it
has been shown that the vorticity at the interface contributes significantly to local
mixing. The dipolar vortex mechanism seems an efficient one that could •.eoduce
the high mixing efficiencies at intermediate Richardson numbers.
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INTERFACIAL RESISTANCE AND MIXING IN STRATIFIED CHANNEL FLOWS
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The interfacial resistance and rates of entrainment are significant factors in two-layered

stratified open channel or duct flows. In some problems (i.e. fresh-salt watei in estuaries) the

mixing should be kept as low as possible and hence appropriate conditions should be

established for doing so. A key factor is the interfacial friction and the associated interfacial

friction coefficient. The theoretical analysis of such problems is based on the one-dimensional

energy equation, applied in both layers of the stratified channel flow, first developed by Scýif

and Schoenfeld (1953). Such an analysis provides an average interfacial friction coeffich..

over the effective length of the interface and does not give any indication about its variation

along the Interface. This variation may be significant in certain regions of the stratified system

and may enhance or depress local mixing in the area.

Bosed on such an analysis Dermissis and Parthenlades (1984) found that the average

interfacial fri~con coefficient Is best correlated with the parameter ReFr2 (where Re is the

Reynolds number of the fresh water layer and Fr is the regular (nondensimetric) Froude

number) and the rpaltive density difference Ap/p. The results were given as a family of curves

with ReFr2 as an abscissa while Ap/p was an independent parameter. A minimal scattering

of the data points was observed about each curve.

In an another category of problems instability of the interface results on the onset of

the interfacial mixing and hence the rates of eutairiment or turbulent diffusion mixing must be

computed based on some geometric and hydraulic characteristics of the stratified system.

Also in this case the theoretical analysis is based on the some equations as before with the

difference that the interfacial mixing velocity q directed from the less to the more turbulent

layer is included in the eq" ations. Various interfacial mixing equations have been developed

by several investigators (Grubert, 1989) relating the it iterfacial mixing with the bulk Richardson

number and the interfacial and boundary friction factors.

Grubort (1989), based on his experimental results, developed three different equations

for int.rfaclal mixing. The first relates the interfacial velocity to a shear velocity, a shear

Richardson number and a densimetric Reynolds number. The second takes into acount a

total shear velocity and a boundary shear Richardson number. Finally the third is expressed



in terms of a Richardson number and the ratio of the boundary to the interfacial friction factor.

The latter was calculated from the relationships developedd by Dermissis and Partheniades

(1984).

The above analysis provides some useful equations about the rates of mixing but

does not give an insight of the mechanisms related to mixing which should be underestood

well in certain geophysical problems before any management strategles take place. For

example understanding the mechanism of purging of density stabilized ponds by a lighter

overflow Is an Important factor in the development of a river management strategy. Armfield

and Debler (1993) have Investigated experimentally and numerically the purging of density

stabilized basins. In the experimental program the channel fresh flow over the stagnant salt

water cavity was turbulent while the numerical model, based on the Navier-Stokes, was

suitable for laminar flows. Hence comparison of small scale phenomena between the

experimental and computational study was Inappropriate.

A more generalized approach is required, able to take into account all the phenomena

described before which fall into the general category of stratified flows. Such an approach is

described in the following paragraphs which Is based on the unsteady Reynolds - averaged

Navier-Stokes equations accounting for both laminar and turbulent flow regimes. For the latter

n turbulence model of the k.- is also included for calculating the Reynolds stresses appearing

In the Reynolds equations.

The numerical model solves the two-dimensloal, unsteady, Reynolds - averaged

Navier-Stokes equations together with the solute transport equation using a finite-volume

method described by Patankar (1980). For the turbulent regime a turbulence model of the

low-Re k-c type, acounting for buoyancy forces, is Incorporated into the numerical procedure,

as described by Launr 3r and Sharma (1974), since in some regions the fluid remains

stagnant, turbu!ence is suppressed and laminar phenomena dominate.

The main characteristics of the finite-volume method used for solving the set of the

differential equations are the following:

(a) The QUICK scheme is used for discretizing the convection terms of the

momentum equations while the PLDS scheme is used for the rest (solute, turbulence

kinetio energy and its dissipation). A first order implicit Euler scheme Is used for the

unsteady terms.

(b) The continuity equation is transformed to a Poisson-type equation using the

SIMPLE method.

(c) The system of the resulting algebraic equations is solved using the TDM Algorithm.

Appropriate boundary and initial conditions are specified for solving the equations,

depending of the problem considered. For the problem of purging of s-it-water cavities the



equations are solved in an unsteady manner with the fluid being at rest initially everywhere

with non-dimensional solute concentration of 1 in the cavity and of 0 in the channel. At the

inlet a fully developed velocity profile is applied (together with profiles of the turbulence

characteristics) which is allowed to develop in the flow field. At the exit aud the walls usual

boundary conditions are applied with no specific treatment.

Initial results are encuraging, Indicating the large scale features of the flow observed

in the experimental program of Armfleld and Debler (1993) such as the initial development

of a splash resulting from the Impulsive start-up and also the development of a recirculation

in the upper part of the cavity which transports the fresh water in the lower portion of the

cavity and hence purging is satisfactory.
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SEA-STRAIT TYPE FLOWS AND BREAKING UP PHENOMENAOF INTERFACE BY VERTICAL JETS
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ABSTRACT

In this study behaviour of vertical jets discharging into sea-strait type flows are
investigated. A special reference is given to the problem of the breaking-up phenomena. Due
to the complexity of the problem, experimental approach is preferred. To explore the
behaviour of jets discharged Into stratified flow, a special rectangular channel was
constructed so that cold water flowing in the lower part and hot water in the upper part. Inter-
layer characteristic were determined by temperature measurements. Jet flows are discharged
from the bottom, at the mid-section of the channel.

As a result of experimental findings, intially, the variation of intermediate layer thickness
(h1) due to Richarson number (RI1) was determined. For breaking-up conditions of the
interlayer by jets, evaluations of the findings showed that, jet Froude number-Richardson
number relation takes an important role in the explanation of the phenomena. For weak
stratification conditions, Fr.-RI relation is linear, but for moderate Ri, numbers there is a
transition zone; for highly stable stratification conditions, breaking up velocity of jet (hence
Fr) Is Independent of Ri number.

1. INTRODUCTION

In the field of hydraulics and environmental engineering several vital stratified flow
problems &rise. Most geophysical flows in nature are stratified, such as atmospheric currents,
ocean currents, sea-strait flows and estuaries. On the other hand, during the discharge of
pollutants from urban regions, industrial sources, thermal centers and power plants, turbulent
buoyant jet flows appear. Since discharge of pollutants Is generally a continious
phenomenon, It carries the risk of environmental pollution. These problems become more
complex in the case of sea-straits.

The purpose of this study is to investigate the behaviour of jets discharging Into two
layered, two directional flows. Special reference is given to the problem of breaking-up
phenomena. In two-layered systems, if the effluent arrives at the intermediate layer, the jet
flow behaves as a drilling factor on the Interface; so in the limit cas', breaking-up

..



phenomenon takes place at the interface by the effect of the jet. This can be applied to

hydraulics and environmental problems since they become more severe and vital at sea-
straits. Due to complexity of the phenomenon, in order to develop a comprehensive
understanding, researches are based on experimental investigations.

2. GENERAL

There has been considerable attention focused on two-layered flows and jet flows during
last fourty years. Starting with Harleman's review, continuing with the studies of Parker,
Krenkel and Turner, first symposium of IAHR on stratified flow held in U.S.S.R. and second
in Trondheim, Norway (1980). Maxwell, Holley and Tekell [1] gave the explicit study on
equations of motions for two layered flow in rectangular channels, including the result of
Integrations. Miklo Hino et al, Abraham (1979) [21, SOmer and Bakio~lu(1981) [31 are among
the ones who worked on interfacial shear stress. Recently, starting from 1986, Armi [4] a•rd
Baines (1988) have been working on depth change, side and upstream effect In stratified
flows. On jet flow, there have been many experimental and theoretical studies starting with
Albertson. Studies on jets in cross-flows intlally were collected and published by Chan and
Kennedy [51, Later, Jirka (1975), Rajaratnam (1976), Fisher (1979), Chen and Rodi (1980) and
Ger, M (1979) [61 worked on lots. These are summarized In Numan's study [7]. Discharge
of thermal jets into the fresh environment indicated by Tatom (1985), later investigated by
Baddour R. and Jones D. (1991) [8]. They concluded that the density buoyant jets does not
adequately predict the thermal buoyant jets. Yannopoulos and Noutsopoulues (1990) also
worked on equations of motlon of jets with some simplifications.

There are no mathematical models which predict the behaviour of jets in two-layered flow
and breaking-up condition of interlayer. Analytical study in this step seems Impossible,
therefore an experimental approach to the problem Is preferred. Due to the complicated
character of the problem, many parameters take part in the phenomena, a group of them
being related to stratified flows others to jet flows. Some of the parameters are depicted in
FigA. These parameters are grouped and Buckigham's w theorem Is applied and second
order of magnitude terms are neglected [7]. Considering the Intermediate layer stability,
shear stress denotes *how stable the Interface Is'. It Is essential In the breaking-up (drilling)
of the Interface by the let action. r being a function of Reynolds and Richardson numbers,

z"- p.k, .. . (A4 2 . k, - f(R6eRi1) (1)

after Vreughenhil (1971). Here, k, is the frIction coefficient, AU is the relative velocity of two
iyayrs ( I U1 I+ I U2 j)n ',sr-.ts. Due to researches between 1971-1979, r, may be
xpressed as a function of RI1, for high Re numbers. When Re, attaints a value of about 104,
k1 Is Independent of Re [2]. Then, to represent the parameters which a'e in primary
importancE in the breaking-up phenomena

UJZ/U 2 - f f~zd1 & Ri~.1 0 h r (2)
'Dj (ij U,



might be given, UJL beign the limit jet velocity. Important parameters appear as a result of
experiments. Experimental procedure is arranged in the light of these discussions.

h .,.. ... .......

=hr U1
S.... ..... .... .......

Figure 1. Sketch for two layered flow and jet discharge

3. EXPERIMENTAL MEASUREMENTS

In order to explore the behaviour of jets in two-layered flow, a special rectangular channel
of 10 m in length with horizontal bottom was constructed. Special Inlet and outlet sections
were constructed, sinoe cold water would flow In the lower portion of the channel and hot
water in the upper part. As a control section In the hot water outlet, a sliding spillway gate
was designed. The jet discharge system was mountod Into the bottom of the channel at the
mid-section. Here, for the Inspection of the flow, the mid 4 m section of the channel was
installed from plexiglass walls. This part was supportened by steel frames and provided the
support system for the traversing cart where thermal probes and levelling systems were
placed.

For temperature measurements a thermistor probe was used so that water temperature
of 12 "C - 65 OC could be measured rather accurately. Hot water supplied from the boller and
cold water was mixed In a cylindlrical tank so that water supply of the desired temperature
was obtained. On hot water, cold water and jet circuits, vanes and orificemeters connected
to manometers were placed. Following the outflux of the cold water and the hot water, a
V-shaped weir was placed for the control of discharge rates on each discharge open
channel. For jet flow, an open constant head tank was designed and connected to the mid-
section of the channel where jet nozzles were located. For visual Inspections, the tracer
Injection, buretta-pipetta system was connected Into the constwat-head tank. A jet discharge
nozzle section was designed so that it was possible to change the nozzle diameters and
angles of attack. The grid system was mounted in froni of the plexiglass in-sp aon w•,ndo
so that, when tracer was used, all details of jet and breaking-up of Interface could be
recorded by photographical technique. FIg.2 shows the genea system.
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Figure 2. Plan and section wlev of the general experimental system

For each set of experiments, Initially a steady-state two-layered flow was established In
the channel. After collecting the data for stratilication and inter-layer characteristics, a jet was
discharged Into the system. The lower depth and discharge was kept constant (0.20 m and
2 It/sec). Also the temperature variation of cold water was negligible (12e - 16 "C). Upper
layer thickness (0.15; 0.175 and 0.20 rn), discharge (1.; 1.5 It/sec) and temperature (220 -
61 0C) were the variables. For each flow condition, Intermediate layer thickness hi and Ril
were defined before the jet measurements. In these experiments RI, Interval was found as
0.2<Ri1 <1.1 so that 0.0016 < A / < 0.0167. Variation of hI/H (ratio of Interlayer
thickness to total layer depth) wA found in conformity with the explanation given In
literature as 0.1 < hi/H < 0.25; [7]. Secondly, vertical jets wore discharged from the mid-
sectin of the channel, to Investigate the tearing effect of jet on Intermediate layer. The jet
discharge was changed carefully and limit jet velocity (UJL denoting the breaking-up of
interface) was detected visually and Instantly by orificemeter reading.

In the first set of experiments, D, was selected as constant. Effective and Important
parameters were defined through these tests. In the light of outputs and initial evaluations,
new experimental programmes were prepared for different nozzle diameters, Di -3 mm and
D.=7 mm respectively. In these programmes hi and h2 were kept constant (h, a h2 , 0.20
rn. since the effect of h , /h 2 was eliminated. Furthermore jet was discharged only in three
different temperatures (cold, medium and max temperatures (5560 0C)). Acoording to the
findings, attained jet velocities were quite large (UJ/U 2 > 24 for D0 = 3 mm; UJ/U 2 > 8 for
D3 - 7 mm) buoyant jet effect were somehow suppressed.
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Parameters which were found in primary importance in the representation of jet flow
behaviour on breaking-up phenomena are namely Frp, D,/h,, Uj/U 2 (jet angle of attack was
kept constant as eTr/2 for vertical jets). Parameters related to Re did not take part since
Re is held constant and variation In Re was ver, small. U /U2 did not appear since U, is kept
constant through the investigations. During the initial stuJies FrdJ was also considered for the
evaluation of the data. But it was clearly seen that on the penetration of the jet into the Inter-
iayer, the momentum effect is much greater as compared to density variation effect. FrdJ >
35; in many cases values over 80, 100 was attained. In literature, buoyant jet effect Is
considered important if FrdJ values are smaller than 20. For the represantation of the
interlayer characteristics, RI1 was found as the basic parameter.

4. EVALUATION OF THE RESULTS

Investigations with different h2/D, ratios show that for low RI1 numbers, penetration of
jet into Interface, hence, breaking-up phenomenon Is easier and the limit jet velceites are
lower. As it Ir seen in Fig.3, for small RI1 values, FrJ-Rl relation is linear:

Frj - A.R11 +B (0.2<R/1<0.45) (3)

I.,j - (g.h,.Ap/p/(&u)2 , au- I UI + u1 (4)

A and B being determined from experimental findings.
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Figure 3. Evaluation of the results for e-9 0 0(h2/DJ =40)

Fig.3 is obtained by depicting the experimental result for h2/DJ -40 on the graph. Here,
the limit jet velocities responsible from the breaking-up of interface, appear In Limit Froude
numbers. Abscissa shows the Ri1 values as an Indicator of stratified flow. Also experimental
findings for h2/Di-66.7 and h 2/D,=28.7 verified the conformity of the above-mentioned



representation for low Ri, values. Following a transition zone (0.45 < Rii - 0.60), stable
interface region is achieved. The case of Ri1 >0.6 produces a highly stabilizing effect so that
limit jet velocity does not vary with the variation In the stratification conditions. It is shown
that working with a constant nozzle diameter, if 0.6<Ri1 <1.1 Is attained, jet velocity, hence
Fr number is constant (Fr, -C). Surely for each nozzle diameter this costant changes and is
determined from the experimental findings. It Is observed FrJ is a stong function of h,/D .

Using the values obtained from experiments, best fitting lines for RI, <0.5 region are
found out, by the least squares method. Also for asymptotic region (Ri, >0.6) average values
are calculated and standard deviations are found out. Standard deviations were found quite
small and in acceptable range. A,B,C coefficients given in Fig. 4 were found for momentum
jets. It can be deduced that asymptotic value (Fr,. C) increases with an increase in h,/D,
hence a decrease In nozzle diameter.
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Figure 4. Fr.4-R11 relations for different jet diameters

This is in conformity with the physical interpretation, since higher momentum flux is
carried out with larger diameter hence the lower limit velocity will give rise to the
breaking-up phenomena.



Straight lines in Fig.4 are the results of mean values for momentum jets. Momentum jet
effect appears to be in primary importance since the variation in limit jet velocity due to
temperature changes is always below 20% and in many cases in the order of 5% or less.
By the analysis of experimental results, an approximation for Frj T is found and expressed,
but not given here. Lower (dashed) lines in Fig.4 indicate the rasuit obtained for hot jets
where FrJ T values are found for T -T,,. On these grape (A) triangles Indicate outputs for
hot jets 1& (20 OC < TC < 60 OC) interval.

In conformity with the phenomenological discussions, we tried to express the breaking-up
condition of Interface by a unique parameter which includes the effect of other parameters
In it. Starting from the Idea of momentum ratio for jets in pipes, definition of momentum ratio
(MrL= My/M 2 ) to represent the limit jet condition for breaking-up of Interface in two layered
flow Is fond quite suitable and comprehensive. Since research on Mr is the subject of
another study [9], further discussion on this matter is avoided here.

5. CONCLUSIONS

As a result of the experimental findings, following conclusions can be given;

1. Breaking-up condition of interface by jets may be explained by Fr.J-Rli relations, for low
Ri1 numbers (RI <0.6); but It is independent of RlI for high RI, numbers (0.6<Ri, < 1.1). For
lower RI, numbers, Fr -Ri, relations are linear (0.20 < Ri1 < 0.45). For the transition region
(0.45 < RIi < 0.60) it Is not easy to given a definite relation. For highly stabilized region
(RI1 >0.6), limit jet velocity, hence Fri Is Independent of Ri, for a given jet diameter. For the
first and third regions, semi-ampirical relations are found for various jet diameters.

2. Since breaking-up of Interface occurs at quite high velocities (UJ/U2>>20),
momentum jet effect predominetes and temperature dependence Is In second order of
magnitude. Also properties of upper layer have influences on limit jet velocity indirectly, by
Its effect on inter-layer; hence h,/h2 does not given an effect on the breaking-up condition.

3. Variation In jet diameter affects the breaking-up condition as follows: For small jet
diameters, higher limit jet velocities (hence large Fri) are attained for the limit case,but for
large nozzle diameters, tearing of interface occurs at lower velocities.

4. Breaking-up of Interface in sea-straits depends on momentum ratio (MrL) which is
defined as the ratio of vertical momentum component related to limit jet velocity (M,) to the
rpreonaO momentu.m (M,) of the lower layer. For the experiments performed,
MrLutk(1 "0.20) Is defined and proposed for practical purposed.

The result found could be applicable to practical cases such as discharge of effluent into
Bosphorous in various conditions.
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NOMENCLATURE

A,B,C: Experimental consents- appearing In U2 Mean flow speed of lower layer
equations denoting limit jet constant U Jet outlet velocity

D Jetdiamter: Acceleration of gravity
Fr Froude number hi Depth of upper layer
Fr~ Jet Froude number h2 :Depth of lower layer
Frd: Densimetric Froude Number hi: Intermediate layer thickness2Fr J T: Fr i values for hot jet experiments ki Friction coefficient 7.,/ .( U)2
M A: Momentum of jet x,y Distances In horizond,ý fi~d vertical
M2 :Momentum of cross flows directions of the mean flow

MrL Limit momentum ratio (M4,/M2) e :Angle of attack of the jet at the
Q :Volumetric flow rate nozzle
Ri1  Richardson number of interlayer V Kinemnatic viscosity

(4p/ )g.hl/(,4V)' p Fluid density
Re R Ryrfolds nuilioer $ hear stress at the interface
T :Temperature Dfeec

:1 Mean flow speed of upper layer
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A Numercal Study of the Breaking of an Internal Soiton
and its Interaction with a Slope

By Kamal Saffarinia 1 and Timothy W. Kao 2

ABSTRACT
The full Navier-Stokes and diffusion equations are applied to study real fluid effects on

generation, propagation, and shoaling of solitary wave on the pyenocline in a two-layer
system. First, these equations are solved numerically to study the limiting height and
breaking of the soliton in the case of constant total depth. Breaking occurs when the
particle velocity in a region of flow field exceeds the wave celerity. This results in a
gravitational instability with the patch of dense water into the upper layer in the lee of the
wave. The numerically determined breaking criterion is supported by an estimate using the
first order KdV theory. Then, the model is used to examine the interaction of the soliton
with a slope-shelf topography and a uniform slope. In both cases, the relative depths of the
layers change at the turning point along the slope. Mechanisms of the wave breaking and
the wave propagation process for both cases are described. Scaled bottom stresses and total
wave run-up on the slope are also presented.

1. INTRODUCIION
Internal solitary waves have been observed in many coastal area through satellite

pictures and field observation. Osborne and Burch(l) documented waves with very large
amplitude in the Andaman sea. Other investigators observed these waves in different
locations in the world such as Apel(2) in Sulu sea and Haury, Briscoe, and Orr(3) in
Massachusetts Bay. It is very well known that these waves axe propagated shoreward and
dissipated in-shore. The dissipation of internal solitary waves may occur through boundary-
layer viscosity, scattering by bottom roughness, and wave breaking. The two-layer model
that supports an internal solitary wave has been studied extensively beginning by
Keulegan(4). Other investigators used a more realistic continuously stratified fluid model
which supports an infinite set of internal waves. Kao et al (5) and Helfrich and Melville
(6) have studied both models for the investigation of shoaling internal solitons through
laboratory experiments under the KdV model. In this study, we solve the full Navier-Stoke
and diffusion equations numerically for a two-layer model under a scheme that reduces the
truncation errors to zero. Results of these experiments are compared with existing
laboratory results.

2. GOVERN1NG EQUATIONS
Figure I illustrates the initial configuration for the slope-shelf topography. It shows a

discrete two-layer system stratified fluid with a free surface in a channel of depth d and
length L with a slope-shelf. The upper layer of depth hI has density p and the lower layer
ofhh has density P2 with P2>P 1 . The depth h, is selected so that h1Ah2 on the shelf. The
density differences represented by y, which is density anomaly, was defined as (p-po)/po,
p is the local density and p0 is the reference denaity and is set equal to P2. The shaded
region of depth Ah and length AL represents the initial step-pool of fluid with density p1.

2 Post-Doctoral Research Fellow, Office of Reseatch and Development, FHWA, McLean,VA 22101, USA.
2 Dept. of Civil Engineering, The Catholic Univ. of America, Washington, D.C. 20064, USA.



The step-pool provides the initial potential energy for the generation of solitary wave. The
location of the turning point which hl=h2 is denoted by Lsc. The governing equations for
an incompressible, diffusive, two dimensional, viscous, and Boussinesq fluid are given as:

ay IAa a 1 V2Y

at Q& a z R&

+Q F2a(9) aýgR=C~ (2)

V2 * (3)

where the vorticity t is defined as:

ax

and stream function icr:

u w
Qa

where u and w are the horizontal and vertical velocities in x and z directions respective1z.
The dimensionless poordinates and velocities can be written respectively as x-x /L, z=z /d,
and u=u */Cl w=w */C, where the asterisk denotes the dimensional quantiV,. The aspect
ratio of L/d is defined sy Q. The non-dimensional time, t is defined by t-t Co/d, where the
reference velocity C. is defined by:

[g (Pl-p2) hlh2
p hi I h2

The Laplacian is given by

v= La a2
Q2 ax2 9z2

The dimensionless parameters are ,7
defined as the Reynolds number, -,
Re,--Cod/v, where v i. the kinematic -

viscosity, the Froude number, P
F=C /(gd)1 2 , where g is the
gravitational acceleration, and the ,.i
Schmidt number, Sc=v/D, in which D
is the diffasivity of density anomaly.
Equations (1) through (3) are solved
subject to the following boundary
conditions:

Figure

(i) for z-'4, O<x<i; =r0, oy/o&=O, 4=0
(ii) for O<z<l, x=O; iV'=, 8ylax=0, 4=862*/x2
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(iii) for 0<z<Hs, Lsb<x<Ls; *=0, y=0, __2 a2 2•/z 2

(iv) for z=-Hs, Ls<x<l; */=0, y=O, =Q 8'/oz2

(v) for z=0, O<x<Lsb; i=J0, y=0, 4=Qh o0•/&z
(vi) for Hs<z<l, x-1; qj=0, y/lax•O, g-#qI/Ix 2 ,

where Lsb denote the x coordinate of the beginning of the slope and is at x=0. 10, Lsc at
0.39, and Hs is the shelf length and is at z-=0.78.

The boundary condition for density on the free. surface, solid walls, and bottoms are no
flux condition. No-slip condition is imposed for the velocity field along the boundaries
setting u and w equal to zero. Pure-slip condition is imposed at the free surface (zr--) with
velocities specified as u=81,/&z and w=0. The initial condition for the density anomaly, y,
is set to be -0.01 for the upper layer and the step pool fluid and y=0.0 for heavier fluid at
the lower layer. The stream-function lr is zero everywhere for fluid at rest(t=0.0).

3. NUMERICAL METHOD AND EXPERIMENTS
The governing equations are solved by the method described in Roache(8). This one-step

explicit finite difference method uses central differencing in space and forward differencing
in time for the linear temis of the governing equations. ETUDE, a special explicit up-wind
scheme introduced by Valentine(9), was used for the non linear terms to reduce the
truncation errors to zero. Values for Re, F, and Sc are 10000, 0.0257, and 833 respectively.
The size of the step-pool is selected to generate only one soliton.

3.1 Limiting Height and Brealdng of Soliton
We first consider the case of constant depth in order to examine the limiting height of

solitons and the mechanism of wave breaking of large amplitude waves. A series of
numerical experiments were undertaken with AL/d=0.40 and Ah/d=3/40, 6/40, 15/40, 21/40
for Q=5 and Q=10 with Ax=0.02, Ax-0.01, and Az-0.025. Results given in Figure 2
indicate that wave amplitude, a/d,approaches asymptotically towards a limiting height. we
found that the limiting height of the solitary wave is at a/d=0.20 or a/hb=2.65 . All the runs
are made for duration less than t=5.0 since only the establishment of the wave was sought.
However, for AhId=21/40 the equilibrium was not achieved at t- 4.5 as seen in Figure 3.
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The main mechanism that limits the wave amplitude is the wave instability. For wave
generated with initial step-pool depth Ah/d-3/40, 6/40, and 9/40 equilibrium was
established at t-=l.5 or earlier. The height of the soliton is always less than the depth of the
step-pooh due to breakinrg and energy dissipation. The local Richardson number,
Jz=-(l/F )oy/az/(cOWz) ', was determined at the crest(or trough) of the wave and it was
found that the Richardson number is decreasing rapidly as the wave amplitude increased.
The maximum particle velocity in the wave was less than the wave speed. At AhId=9/40,
local small pockets of closed isopycnals representing very weak gravitationally unstable
regions appeared near the wave crest, signifying that gravitational instability was incipient.
No gravitational instability had occurred at this stage. At Ah/d=21/40 large scale
gravitational instability extended over a large region in the back of the wave. This is
shown in Figure 3 with the streamlines superposed on the isopycnals. The isopycnals show
an overturning event in the lee. There is entrainment of dense water into the wave during
the overturning process. Local Richardson number at the crest decreased to near the critical
value so that shear instability was also incipient. However a search of Richardson number
over the entire field indicates that the local Richardson number falls below the critical only
at the border of the gravitationally unstable region where the Richardson number becomes
negative. This breaking process occurred over an extended period of time with the wave
gradually decreasing its amplitude. In the present run, the numerical experiment was
terminated before equilibrium was established. It can be concluded that breaking occurs
when the wave amplitude is large enough so that the particle velocity in the wave exceeds
the wave speed. For the present case, the variation of wave speed C with the non-
dimensional amplitude alh , and the variation of maximum particle velocity in the wave
Umax with a/h1 are plotted in Figure 4. The intersection of the two curves determines the
limiting height from the breaking criterion just mentioned above.

An approximate estimate for breaking of internal solitary wave in a fluid of constant
total depth due to gravitational instability can be found based on the KdV theory (To be
sure the first KdV theory can not predict breaking). According to the first-order KdV
theory, the wave speed for the internal solitary wave is given by C/Co = 1 + 2/3 j r I a/d.
The value of r have been computed by Kao, et al (5). For example, using hi/d=0.075,
I r I =6.70 for ad=28. The criterion for overturning instability is Umax/Co > C/Co, where

ithn_ is the maximum particle velocity in the wave. In the KdV theory umax-uI1, where u1
is the particle velocity in the upper layer at the wave trough(crest). Also from the first
order KdV theory Umax/Co=a/h . Therefore, it can be shown that the criterion for
gravitational instabi[-ty is a/dI >d/h1 /(d/h 1 -2/3 r I). For a d-28, h 1/d=3/40, and r-6.70, we
get a/h I>2.01. 3.500 .5
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The first order KdV theory gives a
linear variation of C/Co and u a/C 0  ,
with the dimensionless amplitu e alhl,
and therefore at least gives a lower
bound estimate to the amplitude for '
breaking. If higher order terms are
included in the KdV theory, the
dimensionless amplitude a/h 1 for
breaking will be larger. The present
numerical experiment indicates that
breaking occurs when a/hl>2.60.

3.2 Interaction With Slope-shelf
Topography I",.- -

Several numerical experiments for
interaction of a solitary wave with a
slope-shelf topography are undertaken
for which reversal of polarity is
possible. Solitary wave reverse its
polarity as they travel through a region
(turning point), where hl-h2 changes Figure 5
sign. If the shoaling water is such that
the depth of the pycnocline exceeds half thi,; total water depth on the shelf then only wave
of elevation is possible on the shelf water. We present results for a case with slope at 1:8.
In this experiment hl/d was set to be 2/14. Experiment started at t=0.0 and continued until
t-1 1.0. A weakly non-linear solitary wave is generated. Figure 5 shows sequences of the
solitary wave propagation over a slope which is represented by three mid-pyenocline
isopycnal lines at various time, t. The wave reaches to the neighborhood of the turning
point, Lsc, the dense water begins to build up at the back of the wave. This phenomenon
resembles the creation of the "shelf" in the wake of the solitary wave proposed
theoretically by Knickerbocker and Newell (10) for a model KdV equation in which the
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coefficient of the quadratic term varies linearly over the slope. The build-up is shown at
time t=4.0. When the build-up reaches its maximum strength, it breaks up into a scattered
oscillatory wave train as shown at time t-6.5. The scattered waves travel into a region with
hl>h2, where the leading wave starts to separate and form a wave of elevation in what
appears to be an emerging train of waves of elevation (t=8.0, 9.5, and 11.0). The vestiges
of the original wave of depression persist in a weakened and distorted form ahead of the
wave train for some distance as shown in the Figure 5. The prominent wave in the region
where hl>h2, is clearly a wave of elevation. Therefore, it suggests that the mass and
energy transports of the original soliton of depression are impeded as it shoals through the
critical point and are redistributed to generate a new wave train compatible with the depths
of the two layers on the shelf. It can be seen that no reflected waves evolved. The plot of
the reversed wave profile based on horizontal velocity u/umax is shown in Figure 6. This
plot shows only the forward portion of the wave when the wave is fully reversed from
both the space records and the temporal records for two times. The results show excellent
agreement with the sech2 profile, confirming that the wave is indeed a KdV solitary wave.

3.3 Interaction with Uniform Slope Topography
Results from the numerical

experiments on the interaction of an
internal solitary wave with a uniform
slope and subsequent wave run-up over
slopes with different inclinations(1:20,
1:40, 1:80) are discussed. For the present .a ,a 4study, we chose the ratio of upper-layer WWM ? M •-

depth to the total depth, hI/d, to be 1/4
so that the interface-slope interaction is at =. ,
x--z'z.75 on the slope (note that the total 014^
depth, d is deepest section of the.AAAX
channel). All experiments started at t=O0 0A
then continued until the wave is reached tWzs._
to its maximum run-up over the slope.
Value for a/d was measured to be 0.080 t.22.0

at the beginning of the slope for all cases.
Figure 7 is for the case with slope at
1:40, It shows the sequences of the wave A
bre?1 'ing on the m.OP Atdffleren '~- A A - LA

interval. The wave is passed through the - •M ,
location L., which is the turning point
(h I=h2) and changing its polarity. The
re!ar face of the wave steepened so that
the wave reaches to its maximum height, Figure 7
breaking at the interface-slope
intersection region on the slope, resulting in the creation of a train of scattered waves with
the leading wave propagating over the slope. The leading wave is indeed a soliton and
propagating over the slope during the run-up process. As the leading wave advances over
the slcpe, its height decreases and the front face of the wave was gradually become parallel
to the slope. The wave moves up until it dissipated. The backflow contains a patch of light
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and heavy fluid which is carried-up by the second approaching wave. Results obtained
from these numerical experiments are found to have the same breaking mechanisms as
those found from laboratory experiments by Helfrich(7), in which slopes at 1:15, 1:20, and
1:30 were used. His experiments led to the production of multiple bolus type of waves
during the shoaling process. In our study, no solitary wave of second mode was obtained
during the run-up process. Similar results were also found for different slopes with smaller
wave amplitude (a/d-0.055, 0.04, and 0.025).

Values for shear stress (-r) at a relatively small diqtany A aay froom the slope
boundary was calculated from r - Au/An, where u-(u +w )'1z and An=Ax cos(tan
1(1/Q)). Figure 8 shows two plots of the shear stress distributions over the slope at two
different times. The maximum shear stress had occurred when the wave was at the early
stage of the run-up process. The values for - is decreasing as the slope inclination and
wave amplitude decrease. The dimensionil value for shear stress with the dynamic
viscosity of ocean water ji-103 kg sec/m" , is 0.066 dyne, while considering an eddy
viscosity value of 10"1m2/s for ocean water.
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The total distance for the wave run-up, XTfgr different slope inclinations can be
determined from XT - 7.87(0), where 6 - a•'°'(a/d), with a=1/20, 1/40, 1/80, and a/d is
the non-dimensiona wave amplitude. This distance was measured from interface-slope
intersection to the point that the wave reaches its highest run-up. Figure 9 shows the total
wave run-up over the slope with 0 is plotted versus the total wave run-up, XT. The value
for the total wave run-up in dimensional form for a wave with an amplitude of 2.85 cm, is
100 cm (for a-1/20). Similarly, the total run-up for cases with a-1/40 and %=1/80 at the
same wave amplitude (a/d-0.08) are 160.93 cm and 201 cm, respectively. These results are
found to be in good agreement with those reported by Helfrich(7).

4. CONCLUSIONS
A breaking criterion for the breaking of solitary wave was found. It was shown that the

breaking occurs when the particle velocity exceeds the wave celerity in the flow field
region. For the wave interaction with slope-shelf and uniform slope, the results conclude
that a solitary wave of depression travelling from the region of hl<h2 into the region of
hl>h2 gives rise to one or more solitary wave of elevation. In fact the original wave of
depression is gradually dissipating through transfer of energy to build up mass at the back
of the wave and through viscous dissipation. The build-up then collapses to give rise to
solitons compatible with the geometry of the shelf region. For the slope-shelf case, the
results show that at least one solitary wave emerges with its polarity reversed. For the
uniform slope case, a packet of oscillatory standing waves exists in the breaking region.
This packet generates a successive train of solitons of reversed polarity onto the slope. The
successive passage of internal solitary wave over gentle slopes contribute to the
transformation of high nutrient fluid from the off-shore region onto the coastal area when
the total run-up of solitons is significant. Also, the internal wave run-up on the slope may
have significant effects for the particle and sediment transport.
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Decay of Internal Solitary Waves and A Comparison of
Timescales of Dissipation and Dispersion

H. Sandstroin and N.S. Oakey
Physical and Chemical Sciences, Department of Fisheries and Oceams, Bedford Institute of
Oceanography, Dartmouth, Nova Scotia, B2Y 4A2.

Abstract. Solitons have been observed and studied on the Scotian Shelf using
the vertical microstructure profiler EPSONDE. During one tidal cycle a packet
of solitary waves has been sampled four times as it propagated onto the shelf to
examine its evolution -md decay. Enhanced turbulence and mixing were observed to
occur in the strongest shear region of the wave packet as expected. About 20% of
the energy lost as the solitary wave packet decayed can be attributed to turbulent
dissipation. The effects of non-linearity, dissipation and dispersion axe explored in
terms of the Korteweg-de-Vrieu-Burgers (KdvB) equation. The dispersive timescale
is always much shorter than dissipative timescal, and both decrease as the soliton
moves on-shelf. The mean dissipation time scale of 12 hours compared to the
dispersion timescale of approximately I hour suggests that the waves are consistent
with the KdVB description. Calculated vertical diflusivities are in the range of 10-6
to l0-4m2a-s.

1. Introduction

The study of oceanic tides in the continental shelf areas reveals that as the tide is modified, an
energy cascade from very large to very small scales takes place. The interaction of the surface tide with
topography, such as the continental shelf edge, in the presence of stratification, generates an internal
tide. In the process the surface tide loses a small amount of energy, insignificant for the surface tide,
but appreciable with the relatively shorter cals of the internal tide. Although short in comparison
with the surface tide, the wavelength of the internal tide is still long compared to the depth of water in
which it travels. The internal tide therefore is influenced by both non-lineLr and dispersive effects and,
given enough time, evolves into shorter undulations. These may be in the form of undular internal bores,
internal solitary waves or "solitons". A very large, if not the major, fraction of the energy in the internal
tid, is then found in the short waves. This encrgy, due to the waves being short but h'ghly intense, is
mo e readily available to ocean mixing.

2. Dissipation of internal solitary waves, ocean mixing

In the transformation of internal tide into solitary waves the energy is repackaged or "quantized"
into compact and isolated units. We also know that eventually the solitary waves disappear and that
their energy is released to the ocean. The evolution of waves can be explored in terms of, for example,

h r d ( .....t , but thcz, i- no comparable a prori fr-amework for discussion
of dissipation mechanisms and how the released energy is redistributed. Sandstrom and Elliott (1984)
suggested, based on their observations on the Scotian Shelf, that most of the energy was dissipated in
a narrow zone near the shelf edge, and that the average rate of dissipation there was 5 x 10-'Wm-2 .
Assuming that mixing occurred in a 50 rn-deep mixing layer, they obtained an average dissipation rate oi
S= 1 X 10- 7Wkg- 1 . This value would increase five-fold if mixing occurred in a 10 m-deep layer, a scale
more representative of the pycnocline scale. Shear instability and boundary layer friction, both interfacial
and bottom, were put forth as mechanisms contributing to the dissipative process. Subsequent sirborne



radar observations showed that at least some of the solitaxy waves travelled further inshore and survived
longer than Sandstrom and Elliott's estimates, suggesting a revision of the dissipation estimate downward
by a factor of 2. Sandatrom et al (1989) compared acoustic backscatter and temperature fine-structure
from a towed CTD prior to and during the passage of a group of large-amplitude internal waves on the
continental shelf off Nova Scotia. They concluded that both acoustic backscatter and temperature fine..
structure could be associated with active turbulence generated by the internal waves. All of these increased
significantly in well-defined layers of approximately 5 - 15 m thickness. They 80so found that the local
Richardson number was small in the same layers, whence shear instability was expected to occur. Their
estimated dissipation rate in the turbulent patches was e = 10- 5 Wkg-1. Taking patchiness of turbulence
into account, the average dissipation rate in a 10 m thick layer was approximately 2 x 10-oWkg-1, a
figure similar to their easrlier *stimate (Sandstrom and Elliott, 1984).

Liu el al (1985) in their study of Sulu Sea solitons included an eddy viscosity coefficient in a parametric
form in the numerical simulation of wave evolution. A typical value of the coefficient used was 10 - 30
n 2 s- 1, which translates into a dissipative timn scale of approximately 1 - 3 days. In that time the average

dissipation rate of a 50 m amplitude soliton, travelling at 2 ru-1, is about 3 x 10-3 Wm-2. The Sulu Sea
solitons travel in relatively deep water and hence survive longer than solitary waves on shallow shelves.
Liu el al do not specify the dissipation mechanisms explicitly. Their eddy viscosity coefficient is based on
the assumption that the small-scale processes in a turbulent layer embedded in a thin pyenodine can be
parameterited in this way. The eddy coefficient may vary with water depth, i.e. mixing in shallow water
due to shoaling effects is deemed to increase the local value of eddy viscosity. The direct effect of bottom
friction on soliton dissipation is small.

3. Dissipation: The Field Experiment

In order to further clarify and quantify the relationships between internal solitary waves, turbulence and
acoustic backscatter in the water column, a field experiment was conducted at the same site where previous
work by Sandstrom et al (1989) had shown vigorous internal wave activity to exist. The observations
were made on the Scotian Shelf, over the corner of Banquereau Bank east of the Gully, in September of
1987, and the study was focused on the packets of solitary waves.

The observational strategy was to set up the sampling equipment on the ship ahead of the expected
arrival of a wave packet, which we tracked by observing band& of increased sea surface roughness on
ship's radar. The impending arrival of the first wave in the packet was the signal to start sampling. A
microstructure profiler, EPSONDE (Oakey, 1988), was profiled to a depth of about 50 meters approx-
imately every three minutes. Vertical profiles of temperature, temperature microstructure and velocity
microstructure were obtained. This sampling continued with the ship drifting in the wave packet for a
maximum of about two hours. The ship then repositioned itself again ahead of the packet for a second
and subsequent series of profiles through the solitary wave packet as it evolved and propagated towards
shallow water. A particularly interesting set of observations was obtained on September 8, 1987. The
same wave packet was sampled during four different sampling periods over a total time span of about 8
hours, during which the waves propagated a dtstance of nearly 20 kin. Each sampling period contained
fi'om 20 to 36 EPSONDE profiles. Figure 1 shows the extent of the sampling area. The heavy arrows
indicate ship drift during stations 74, 76, 78 and 80. The start and end times at each station are in GMT.

The wave packet was first observed in 105 metres of water. During the first station, lasting one hour,
the ship drifted over a smell distance, essentially parallel to the wave crests. At the later stations the
ship apparently drifted with the phase speed of the waves, and was in effect surfing on internal solitary
waves.

To estimate the part of the energy that was dissipated, each vertical profile from EPSONDE was ana-
lyzed to obtain the average dissipation in successive 2 second segments of the vertical profile corresponding
to approximately 1.8 metmes in the vertical. The predominant dissipation occurred in a layer about 10
metres thick, similar to the pycnocline thickness and tracking it in its vertical excursions. The diagipation
estimates were therefore averaged over 10 metres vertically at the depth of maximum dissipation to obtain
the mean dissipation for -ach profile. These were averaged in turn to obtain the mean dissipation for
the whole sampling period (siation). Values at each station are shown in Table 1. The tabulated values
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are estimated to be accurate to within a factor of 2 (Qakey, 1982). At each station the measured power
loss is referred to a mean location and time, where the location is relative to that of the initial station.
The Power Loss per meter of crest length for each station is estimated by assuming that the dissipation
occurs in a 10 metre thick lyer, and that the length of the wave packet is 3 km. The latter assumption
is somewhat arbitrary, but is taken to represent the distance that includes the most energetic waves and
hence a large (- 90%) fraction of the total energy in the packet. At the initial station almost all of the
wave packet passed under the ship. At other stations a packet length estimate is obtained from radar
observations of number of bands of surface roughness and their separation (typically 6-7 bands separated
by 400-500 metres). The Power Losses at each station are tabulated in Table 1. These multiplied by
the time at the station yield Energy Losses per unit crest length at each station. Energy Losses between
stations are calculated similarly by using the average of Power Losses at the two adjacent stations. A
sum of all Energy Losses gives the total turbulent energy dissipation in the 10 metre thick layer over the
eight huur sampling period as 4.5 x lOJrn-1.

In addition to the microstructure data, the EPSONDE profiles yield the temperature "macrostructure",
from which the isopycnal displacements can be extracted. The changes of potential energy due to the
internal waves can be estimated, and assuming equipartition of energy, the total baroclinic energy is
obtained. Thus at station 74, where the wave heights are typically 20 m, the estimated energy irk the 3
km long wave packet is 5 x 10' Jn-r of crest length. At station 80 the displacements are reduced to
about 15 m, and the energy hu decreased by about 50 percent.

3.1 Discussion of Experimental Results

Repeated samnpling of au internal wave packet has produced the first direct measurements of turbu-It At
dissipation due to the waves in a part of the water column that includes the pycnocline. The wave
packet travels from deeper (105 metres at station 74) into shallow (60 metres at station 80) water. The
crests of waves, as seen by radar, are aligned with isobaths. Thus propagation direction is transverse to
bathymetry. In addition to the radar observations of the sea surface, acoustic backscatter data of the
water column provides supporting information on the wave packet. Howcver, explicit discussion of the
acoustic data is beyond the scope of this paper. Density data used in this discussion was obtained from
CTD measurements preceding and following this particuiar 8 hour obse.vation period.

The total baroclinic energy at station 74 is 5 x 10 5Jm- 1 . At station 80 half of this remains. Of the
2.5 x 10o-Jm 1 energy lost, about 20 percent (0.45 x 10'Jm=1 ) is accounted for by turbulent dissipation
in the pycnocline. Turbulent dissipation outside the pycnocline is small in comparison. If the 20 percent
of bulk dissipation goes into turbulent dissipation, and hence into mixing the water column, then the
fractional mixing efficiency is 1/4. This ratio was suggested by Gregg and Briscoe (1979), albeit without
observational support, and used by Sandstrom ct al (1989). Of the remaining 80 percent of bulk dissipa-
tion, we estimate that approximately 1/4 to 1/3 is lost by bottom friction and the remainder is fed into

Table 1. Dissipation, Energy and Power Loss in Soliton 'Transit

Site Samples Time Distance Dissipation Power Loss Energy Loss

Kilometers Watts/m Waits/mr Joules/m
74 20 17.38 0.00 1.41 x 10-4 4.23 0.15 X 105

(0.16 x 10')
76 27 19.07 4.49 4.15 x 10-4 12.5 0.59 X lob

(1.04 x 101)
78 29 22.38 11.87 4.88 x 10-1 14.6 0.55 X 105

(0.44 x 105)
80 36 24.11 17.23 1.07 x 10-3 32.1 1.60 X 105
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other scales of motion and/or radiated away. The mean dissipation rate over 8 hours is 5.3 x 10 "Wkg-,
corresponding to a vertical diffusivity of 5 x I0-rn•-'. The values range over about an order of magt.
nitude, from 1.3 x 10- 5 m2 's- at station 74 to 1.0 X 10-1r,28-C at station 80. The diffusivities are
calculated using oc, = rcN-2 , where 1' = 0.25 is typical (Oakey, 1985). The values are not large, with
strong stratification offsetting large diow';,ation.

The reduction of wave energy by 50 percent in 8 houro translates into an energy dissipation tintescale
of about 12 hours or one semi .diurnai tidal cycle. The timescale of amplitudu dissipation is about twice
as long. However, the dissipative timescales vary by over au order of magnitude as the wave packet
moves into shallow water, from approximately 70 hours at station 74 to 5 hours at station 80 for energy
dissipation, and about twice as long for amplitude disaipation. The dissipative timescale is always much
longer than the dispersive timercale, which is approximately one hour. Figure 2 shows the 20 km long
section with the sketch of bathymetry and the calculated values of energy dissipation and the two time
scales. The solitary waves can be expected to behave locally as solitary waves, for which the KdVB
equation applies.

4. Shear-generated Turbulence, a Dissipation Model

The basis of the following model is the observation (Sandstrom et al, 1989) that in large-amplitude
waves the vertical current shear can cause the local Richardson number to be small enough for the flow
to be unstable. They found that 14 < 1/4 in a layer near the N maximum and associated this layer with
the observed enhanced turbulence. They also suggested that in a wave packet, each successive wave could
reinforce the turbulence in the already existing layer and implied that Lutive turbulence could persist at
somewhat higher value of RW than 1/4.

The local Richardson number is (Sandatrom et al, 1989):

N 2  
co0

4  1 ( .
(Os/Or) 2 

= N 2 (zr)t 2 (z,) X U 2 a2 (x,t) (4.1)

separated into a depth-dependent part and a part varying in time and in propagation direction. a(z, t)
is the wave amplitude and U and co are the propagation speeds of the solitary wave and the linear speed
respectively. # is the eigeufunction of vertical displacemnant. The depth-dependent part is calculated
directly from density data and remains invariant as long as stratification is the sane. The Richardson
number thus varies inversely with U2  , the square of flux of a. Solitary wave troughs are therefore most
likely sites of turbulent layers, although once initiated, the layers may persist for smaller than critical
amplitudes.

We consider a solitary wave of amplitude a.. The criterion for onset of turbulence, leading to loss of
energy from the wave is a0 > ac, where a, is the critical amplitude defined as the amplitude at which
&.1 = 1/4. If the critical amplitude is not exceeded anywhere on the wave, dissipation is assumed not
to occur. If the criterion for onset of turbulence is satisfied, we assume that the solitary wave loses
energy, until the wave amplitude decreases to the critical value. This does not occur instantaneously, but
gradually over a longer dissipative turne scale. The wave meanwhile has to adjust its shape to the new
energy environment. This adjustment takes place over the dispersive time scale, which, given the wave
parameters, can be easily calculated. The usual assumption in connection with the KdVB equation is that
the dissipative time scale is much longer than the dispersive time scale. Usually this cannot be assumed
a priors, but we have shown it to hold at l•eaat during the 8 hours that a wave packet wrz followed.

4.1 Observations vias-vis the model

Using the appropriate water depths at stations 74, 76, 78 and 8U, the corresponding critical wave
amplitudes for H, = 1/4 are calculated as 20.5, 19, 17 and 17 metres respectively. A slight change of
critical Rihardson number to 1/3 alters the critical amplitudes by a factor of Vr1, ranging now from
18 to 15 metres. The observed reduction of wave amplitudes fmom about 20 to 15 metres is therefore quite
consistent with the criterion of onset of turbulence and the subsequent loss of energy from the waves.
Only a fraction of the energy loss goes into mixing of the water column in the form of the measured C.
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5. Summary

For moderately non-linear motion, the Korteweg -deVries-Burgers (KdVB) equation describes the
evolution of the internal tide and the solitary waves that the internal tide is transformed into. The non-
linear and dispersive coefficients in the KdVB equation are derived from the internal wave eigen-functions,
based on measured density data. The eddy viscosity coefficient is not a property of the fluid and a much
more elusive quantity to determine. The decay of internal wave motion is due to different causes. In this
paper we have focused on determining the attenuation due to turbulent layers and microstructure with
shear instability as the probable cause.

By direct measurement of turbulent dissipation within a well-defined packet of internal soliary waves
we can account for about 20 percent of total energy loss this way, arriving at a fractional mixing efficiency
of 1/4. A simple dissipation model, based on the critical Richardson number criterion for onset of
turbulence and loss of energy from the waves, is consistent with observations, The calculated vertical and
horizontal diffusivities range from 10-1 to 10- 4

m 2
s-1 and from 0.1 to lm 2s-' respectively, the latter

being based on a typical horizontal scale for solitary waves of 0(100) metres.
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Figure 1. The sites of successive sampling of a packet of solitary waves, September 8, 1987. The arrows
indicate the direction and distance of ship drift during sampling periods. Start and end times are in
GMT; depth contours are dashed lines with depths in metres.

Figure 2. Sectional representation of the water depth in the sampling area with the mean position of
the stations. In the upper half of the figure the measured energy dissipation at each station and the
calculated time scales of dissipation and dispersion are shown.
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Vertical mixing of passive scalars due to breaking
gravity waves.
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1 Introduction

Large parts of geophysical flow systems like atmosphere and ocean are stably stratified
with moderate or weak turbulent activities. Mixing of passive scalars (e.g. air pollutants)
is rather slow under these circumstances except for some singrtdar events like Kelvin-
Heliholtz-instabilities or breaking gravity waves.

This is especially true for the lower Stratosphere, where there is little ow no turbulauce
under usual circumstances. Concerning the problem of vertical diffusion of passive scalars
this has become of some concern because of the possible influence of high altitude aircraft
traffic on climate, e.g. green house effect or Ozon hole. Because pollutants from aircraft
emissions are set free in a form of rather narrow line sources (few meters wide) it is of
interest for modelling chemical reactions in global climate models, how fast these trace
substances are distributed vertically. On the smallest scales this process is usually due -o
small-scale turbulence in the atmosphere. But as the lower Stratosphere is veiy stably
stratified, no detectable permanent turbulence level is found in these regious. It has
therefore long been suggested, that turbulence is created by shear-instabilities (Kelvh-_k-
Helnholtz-instabilities) or breaking gravity waves (e.g. Fritts and Rastogi, 1985) within
limited local and spatial scales. The question then arises, what net effect can be gained
from these events concerning dispersion of passive scalars, if averaged over space and time
as suitable for large scale numerical models of atmospheric chemistry (e.g. CruLzen and
Briihl, 1990).

In this paper we describe some numerical simulations on the dispersion of passive scalars
due to breaking gravity waves. This extends earlier work on the mixing of air pollutants
by Kelvin-Helmholtz-instabilities (Schilling and Janssen, 1992).

2 The Flow Model

Numerical simulations of gravity waves were performed with a two-dimensional model
based on the anelastic version of the Boussinesq-approximation subject to usual Reynolds-
averaging. Equations of motion, continuity equation and heat transfer equation can be
written as:

1l



i1

+J Ou+ 9a 06,3+ ~1 Km

af4u9 - 0 (2)

II
axiJ

"Ft +6 - - Kh -- (3

in (1)-(3) U7 is the mean velocity vector, 0 the potential temperature and • pressure. Km
and Kh are the eddy viscosity and eddy heat diffusivity, respectively. Both are related
via a Prandtl number by K4 = Kl/Pr.

The eddy viscosity is obtained from the Prandtl-Komogorov relation

K c,, = E 2  , (4)

where E = u'.2/2 is the turbulent kinetic energy and I a mixing length. The latter is

related to the grid size A = (Ax. Az)1'/ by

1= min(A,0.76N-'EE/') ,N' >o ()
= A ,N, < 0

The turbulent kinetic energy is obtained from the usual equation

% UO-k K,. + (6KhN)+ Km i (6)

In (4) and (5) N is the local Brunt-Vaisala frequency

( ?\ 112

Sg a-6(7)

Equations (1), (3), (5) have been solved numerically and finite difference grid. The details
on thc numerical methods can be found in Schilling and Janssen (1992). The boundary
and initial :onditions will be given in section 4.

3 The Dispersion Model

Dispersion of a passive scalar within gravity waves due to mean flow and turbulence
is simulated by means of a Lagrangian particle model (e.g. Legg and Raupach, 1982).
Several thousands of weightless particles are set free in the source and their trajectories
are followed by:

Xi(t + At)' = Xi(t) + (Uj(t) + ,'(t))At (8)

2



The turbulent velocity fluctuations aj are obtained from

u'(t) = RLU'(t - At) + u!(t) , (9)

where RL is the Lagrangian autocorrelation given by

RL = exp(-AtI,-L) (10)

u" is a random velocity, which can be obtained from a stochastic process via the Monte-
Carlo method:

, = (1- _4)'/ 2 ,,•X + (1 - RL) , (11)

w* =(I _R2)/aX+( '" a
=( ) 1 2 X + (1- L)rL--.

az

In (10) X is random number with normal distribution and au and aL,, are the velocity
variances. These are obtained from the turbulent kinetic energy by

,1.OE1 2  , a,, = 0.4E'/2  (12)

The Lagrangian time scale 'rL needed in (9) and (10) is given by

,"t = K,.IE' (13)

By solving Equations (1) through (12) numerically it is possible, to obtain partide positi-
ons for every timestep At of the flow development. Concentrations can then be obtained
by counting the number of particles contained in a box of the numerical grid.

4 Simulation of breaking gravity waves

The aim of our study was to investigate the mixing of passive scalars due to breaking
gravity waves within the lower Stratosphere. As initial condition we choose a stably
stratified shear flow with stratification N = 8.10-s,-1 = constant and mean velocity Uo
according to

Uo(z) = -AU tanh[(z - zý)/H] , (14)

with H = 1000m, z, = 25kin (critical level), AU = +20is-1. The computational domain
was taken between 10km and 30km height in the vertical and 8hm in the horizontal
direction. The gravity waves were initiated at the lower domain level (z=10km). This
simplifies the physical observation that gravity waves in the stratosphere are excitated
by gravity waves starting in the troposphere. Following Fritts (1985), a single wave was
prescribed at the lower boundary by a vertical velocity

w(x, t) = wo[sin k(x - ct)]g(t) , (15)
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Figure 2: Dispersion of tracer particles within the breaking gravity wave shown in Fig. 1.
Time after emission of a small particle cloud at x = 2 km and z = 20 km is given.
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where g(t) is an initialization function

g(t) = sin 2 (2rt/T) t < T

g(t) = 1 t> T

The wave amplitude was increased in time according to (14) until t = T (usually T =
300s) and was then kept to constant at its final value w,- = lms-1. Wave length L = k/2r
was varied between 2 km and 8 km and phase speed c between 0 ms-1 and 16.7 ms- 1 .

An example of numerical simulations for the case L = 8km and c = 0 ms-' is given in Fig.
1. About 30 minutes after the wave was excitated at the lower boundary (at z = 10km),
a large amplitude wave can be seen at midlevel (about 22kmn) which breaks subsequently
(t = 40 min - t = 1h). One should note, that wave breaking occurs already at z ;-, 20 kin,
which is below the critical level at z = 25km. Hence in this case, wave breaking is not
due to wave-critical level interaction but due to self-induction of a local critical level by
tilting of phase lines due to wind shear (Koop, 1981; Weinstock, 1982).

The wave breaking event has a dramatic effect on the dispersion of a cloud of passive
scalar, which is injected into the gravity wave at time t=30 rmin at z=l9km. Although
the wave is starting to break at time 40 min, the particle cloud is stretched initially
more or less in the horizontal direction due to shear effects. But after t=50 min, vertical
transport starts to be very fast and the particle cloud is distributed vertically over about
6km within a few minutes. This behaviour is presented more clearly in Fig. 2, where the
cloud development without gravity wave contours is shown (time is now counted from the
start of injection of particle cloud).

5 Effective Diffusivity in Breaking Gravity Waves

The vertical mixing of passive scalars due to breaking gravity waves (Fig. 1,2) can not be
regarded as turbulent diffusion in the usual sense, because mixing is due to the special
event of wave breaking. But for large scale models of the stratosphere it is necessary, to
parameterize diffusion by an effective subgrid diffusion coefficient. Hence it may be useful,
to define a diffusion coefficient for the total event of a breaking gravity wave. This is of
course not an easy task and it is not clear from the outset, which method will provide
reasonable estimates.

For the case of mixing in Kelvin-Helmholtz waves, several methods of evaluating an ef-
fective diffusion coefficient have been tested (Schilling and Janssen, 1992). The estimate
from a diffusion equation averaged over horizontal planes seemed to yield the most plausi-
ble results. If we denote mean concentration by d, the one-dimensional diffusion equation
can be written as

Here 1 4(z) is an eddy diffusivity which can be evaluated from (14) by inserting concen-
£rations E(z, t) as obtained from simulations with the Lagrangian model. For the case
shown in Fig. 1,2, the temporal development for the vertical mean of Ko(z) is shown in
Fig. 3. Vertical mixing seems to be most effective in the first half an hour of the breaking
gravity event. If we take the mean over the whole event of say 90 minute duration, we

6



get for the vertically and temporal averaged effective diffusivity Klie¢f ý- 0.7nOS-'. This
would be the average value for a breaking gravity wave over a vertical voiume depth of
10km and time scale about 90 minutes. This value is comparable with estimated of IK,,q 1
given from other authors (e.g. Woodman and Rastogi, 1984).

More examples of breaking gravity waves for other combinations of wavt length and phase
speed and the dispersion of passive scalars within those wave events are given in Schilling
(1993).

The final stage of breaking gravity wave will lead to layers of small-scale turbulence as
is often observed in the lower Stratosphere. This is clearly a three-dimensional process
which cannot be handled properly with a two-dimensional model as presented here. But
with regard to dispersion of trace substances our results indicate (see e.g. Fig. 3), that
vertical mixing is most effective within the early stages of wave breaking. As this part of
the whole process can be still regarded as dominated by two-dimensional motions, the use
of a two-dimensional numerical model seems to be justified for the purpose of this study.

6-
7 5-

cE 4-
U 3-

20 40 60 80 100
time (min)

Figure 3: Temporal development of the spatial averaged effective vertical diffusivity l(celf
f(.r us cas r 1.

for Le ca~se urekiung gravity wdve in Fig. 1.2.
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Abstract
This paper describes results of numerical computations of stratified flow of finite depth D
over a variety of obstacler. using the time-dependent Navier Stokes equations with stability-
dependent eddy viscosity turbulence models. Most computations were performed with the
Froude number Fh in the nange 0.5<Fh-2 and the parameter K=D/CxhFh) in the range 1,KSlI0.
Here Fh n UINh. where U is the free stream velocity. N is the buoyancy frequency and h is the
height of the body. The domain and boundary conditions correspond to those of a towing tank
experiment, and the initial conditions were 'impulsive start', Critical Froude numbers for
wave-breaking over two-dimensional obstacles are compared with theoretical predictions and
experimental results. Preliminary results suggest that while a mixing length turbulence
model may be adequate for two-dimensional flows, accurate representation of flows containing
breaking waves in three-dimensions requires at least a one-equation model, The occurrence of
,merged flow', in which the breaking region joins with the secondary separation zone. and
which has been seen in experiments, is found in the computations in three dimensions, but not
those in two.

1. Introduction

It is well known that stationary lee waves can form in the flow of a density-
stratified fluid over an obstacle. Under the right conditions, streamlines may
steepen sufficiently that overturning occurs and the wave breaks. The
phenomenon has been studied in a variety of ways, ranging from theoretical work
to more recent experimental and numerical studies, usually in the simplifying
context of uniform upstream flow and linear stratification. Miles & Huppert's
(1969) analysis with Long's model for two-dimensional flow of infinite depth
showed that the critical Froude number (the Froude number at which breaking
first occurs) increases with body length, and values for different body shapes
were predicted. Clark & Peltier's (1977) numerical simulations first revealed the
profound effects of wave breaking on the surrounding flow in the atmosphere.
Implications for gravity wave parametrisation schemes for atmospheric models
and the prediction of transport rates of atmospheric constituents, for example,
have motivated interest in detailed delineation of wave-breaking regimes.

Recent towing tank experiments (Rottman & Smith, 1989 and Castro & Snyder,
1993) have provided critical Froude numbers for a variety of three-dimensional
hill shapes. To date, however, there has been little corresponding numerical
work. The numerical work that has been done tends to falls into two categories.
Firstly, inviscid atmospheric simulations (for example Clark & Peltier, 1977,
Scinocca & Peltier, 1989 and Smolarkiewicz & Rotunno, 1989), and secondly,
smaller scale computations (for example Hana:;aki, 1989 and Lamb. 1994), used
largely to provide comparison with theoretical models.

The numerical computations described here are part of a program of linked
experimental and computational work designed to explore the phenomena
associated with stratified flow over obstacles. Results for laminar flow over a two-
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dimensional vertical barrier are summarised in Castro (1993) and Paisley et al
(1994), for weak and strong stratification respectively. The latter results indicated
significant unsteadiness, in keeping with that found experimentally for obstacles
wide in the spanwise direction (Castro et al, 1990). Subsequent computations have
included a boundary conforming transformation and simple turbulence models,
allowing simulation of flows over smooth obstacles at realistic Reynolds numbers.
The results described here are believed to be the first viscous predictions of
critical Froude numbers for particular obstacle shapes,

Although most computations so far have been two-dimensional, we describe the
results of some three-dimensional computations using the SWIFT code (Stratified
Wind Flow over Topography, Apsley. 1993). A striking feature of recent towing
tank experiments has been the occurrence of 'merged flow' (Castro & Snyder,
1993), or a 'hydraulic jump' (Hunt & Snyder, 1980). Under these conditions the
breaking wave is observed to merge with the zone of separated flow in the wake to
give a deep region of well-mixed flow extending downsteam. Although not seen in
the two-dimensional computations, qualitative behaviour such as this has been
seen in the three-dimensional computations.

2. Numerical Method

2.1 Discretisation and solution procedure

The nondimensional equations of motion for turbulent stratified flow in two or
threc dimensions are

DUi' pj A a 1Y1u

ht aI+[R dxj +rij}
Do - aj D. e + HJ
Dt ax {Rc.Scaxj+H
au,aLL 0.axi- "

The equations have been nori-dimensionalised by the freestream velocity U, the
reference density Po and the height of the obstacle h. The equations are recast
using a boundary-conforming tra.isformation, and are discretised using a finite
volume method with standard techniques for the diffusive terms and a flux-limited
treatment for the advective terms. The solution procedure is implicit, employing
Backward Euler time-stepping and an outer pressure-correction iteration. All the
resulting discrete equations form diagonally dominant sets and are solved using a
standard tridiagonal matrix method.

2.2 Turbulence parametrisation

In the eddy viscosity approach adopted, a mixing length model and a one.-equation
model have been used. The components of the Reynolds stress tensor and the
turbulent contribution in the diffusive term in the transport equations are

i=v + 1i 1, Hj = (vt/Pr) ,
axi 5ax;

where Pr is the turbulent Prandlt number (=0.9). In the mixing length model the
eddy viscosity is determined as vt = 12S, where the strain rate S is given by

S2 taxj aux



and the mixing length I is given by 1/1 = 1/10 + 1/K z. Here K is von Karman's
constant, z is the distance from nearest solid surface and 1o is a constant.

In the one-equation model, a transport equation of the form
Dk a f(v A

Dt Dxj j} +Pk-pe+Gk

is solved for the turbulent kinetic energy, k, where Pk, Gk and c are terms
representing shear production, bouyancy production and dissipation rate. The

eddy viscosity is now vt = Cgk 121 where Cg is a standard constant.

In stratified flow the eddy viscosity is modified according to the local conditions of
stability. Defining the value of the local gradient Richardson number as

-F'h S 2

and setting a value for the critical value Ric (say 0.25), the eddy viscosity is now:

Stable (Ri > 0): Vt('.Ri/Ric)
2  0 : Ri R

Ric : Ri

Unstable (Ri < 0): vt(1-Ri)1/2.

Details of the numerical method and procedure can be found in Paisley (1993).

3. Results and Discussion

3.1 Two-dimensional computations

Results have been obtained for two..dimensional flows over a vertical barrier and
two cosine hills of the form h(x)=0.5(1+cos(xx/L)). The axial aspect ratios of the
hills are L/h=8.0 and L/h=1.8, giving slopes of 110 and 400 respectively. A typical
computational Jomain is shown in figure 1, with associated boundary conditions.
In all computations h/D=0.1 and initial conditions correspond to an 'impulsive
start'. " o zells were used in the vertical direction, with the smallest vcriical cell
dimension being 0.025 for the hills (at the surface) and 0.1 for the fence (at the
tip). Although the upstream extent of the grids varied, thmec we.re around 200
points covering -100h:x5100h, with the smallest horizontal grid dimension being
0.1. Most computations have been performed with Re=10 4 and the mixing length
turbulence model, with selected cases being repeated with the k-l model.

Fig 2 shows typical streamlines for the long cosine hill, fence and short cosine hill
at the approximate Froude number at which streamline overturning first occurs.
In each case the discrete structure imposed on the flow by the presence of the
upper lid can be cleary seen, with 2, 3 and 5 wave umodes prcont rspc*,iv,.y.
Upstream influence is marked, as expected in two-dimensional finite depth flows,
with blocking and upstream separation known to occur.

Data relating te the breaking waves in two dimensions is summarised in figs 3 and
4. Fig 3 shows the variation of the critical Froude number with the axial length of
the three obstacles. The value of Fcrit for the short cosine hill agrees well with
Baines' (1977) experimental results for a similarly short Agnesi hilt. The cosine
hills follow the trend of Miles & Huppert's (1969) result for infinite depth in that
Fcrit increases with obstacle length. It is likely, however that Fcrit for the long

cosine hill is not independent of finite depth effects, since K is only just greater
than 2, while K is between 4 and 5 for the short hill. The value of Fcrit for the



fence is believed to be independent of such effects, for there was no change in
Fcrit when the computation was repeated with h/D=0.05. The value of Fcrit for the
fence is significantly greater than the Miles & Huppert prediction for a zero width
body, and is closer to the value obtained experimentally for narrow triangular
obstacles (Castro, 1987). It would appear that the separated wake gives the bluff
body an apparent length, with the value of Fcrit correspondingly higher.

Fig 4 shows the non-dimensional time to the first occurrence of streamline over-
turning for each obstacle. In each case there is a monotonic decrease as the
Froude number decreases and wave speeds increase. The waves over the long hill
break before those over the fence, presumably because the longer obstacle
generates waves of greater amplitude. When waves over the short hill break
however, they break sooner than those over either of the other two obstacles,
probably a consequence of the matching of the shortest lee waves (X/h-3,8 when
Fh=0.6) and the length of the topography (2L/h=3.6).

The computations with the short cosine hill were performed to provide a
comparison with Castro & Snyder's (1993) recent experiments with three-
dimensional hills of this cross-section. Fig 5 shows streamlines at Ut/h-20
(approximately one quarter of the total tow-time in the experiments) for the
computations of the flow over the short cosine hill at Fh=0.8, 0.7 and 0.6. The
breaking region, when it occurs, is quite distinct from the secondary separation
zone, with no sign of merging at all. The influence of the turbulence model on
these results was assessed by repeating the computation at Fh=0. with the k-I
model, with little qualitative change.

As found in experiments with bodies which are wide in the spanwise direction,
sonic of the two-dimensional flows computed here exhibit significant
unsteadiness. Fig 6 shows drag histories for the three cases just described, in
which pronounced oscillatory behaviour is observed. A fuller account of the data
relating to unsteady behaviour is given in Paisley & Castro (1994).

3.2 Three-dimensional computations

The geometry for the three-dimensional cases corresponds to the COS3 hill used in
the experimental study of Castro & Snyder (1993), the cross-section of which is the
short cosine hill descibed above, and the end-section of which is generated by
rotating the cross-section through 1800. As the hill is symmetric about its centre
plane, only the flow in one half of the domain has been computed. The geometry
corresponds to a rectangular cube of dimension -25sx/h•100, 0_<qy/hsl2 and
0•z/h<10. Boundary conditions were as in the two-dimensional case with an
additional symmetry boundary condition on the centre plane and wall boundary
conditions at the far side. Two grids have been used, of sizes 64x24x32 and
96x32x48. The grid spacings near the hill are approximately four times and two
times greater respectively than those in the corresponding two-dimensional grid.

The three-dimensional flows are qualitatively close to those found experimentally,
aithough they are more sensitive to the numerical procedures than the
corresponding two-dimensional flows. Because of the long computing times, so far
only coarse grid computatiops with the mixing length turbulence model have
been run on for long times. As expected. the drag histories (fig 7) for Fh=0.8, 0.7
and 0.6 indicate less variation than those of the two-dimensional cases (fig 6).

Velocity vectors in the centre plane at Ut/h=20 for these three cases are shown in
fig 8. Although the flows at Fh= 0 .8 and 0.7 are qualitatively very similar to the
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two-dimensional results of Fig 5, the flow at Fh=0. 6 is quite different. Streamline
overturning occurs at low level in the three-dimensional flow, with the breaking
region and the separation zone merging, in a manner very similar to the observed
experimental behaviour at this Froude number.

An attempt was made to verify these results with the mixing length model on the
finer grid, but without success. Although the flow without breaking waves, Fh=0.8,
was similar to the flow obtained on the coarse grid, streamline overturning did not
occur in the other cases, either aloft at Fh=0.7 or at low level at Fh=0.6. In each
case, surface separation is very much more pronounced. The mixing length model
would appear to overpredict surface separation to such an extent that overturning
aloft never occurs on the finer grid. The fact that the flows obtained on the coarse
grid were qualitatively close to the those obtained experimentally appears to be
fortuitous, and a result of the effect of poor grid resolution in predicting
separation. Although the mixing-length model was found to be adequate for
predicting wave-breaking in two dimensions it would appear to be just too crude
(perhaps unsurprisingly) for more complex three-dimensional flows.

A third set of results was obtained with the k-I model on the coarse grid. These
were qualitatively similar to the results with the mixing length model on the
coarse grid (fig 8), with clear merging flow again apparent at Fh=0.6. These
computations we-c repeated on the finer grid, fig 9, with better success than with
the mixing length model. Streamline overturning and wave breaking is predicted,
with evidence of merged flow at Fh-0.6. Although the qualitative features agree
well with the experiments, the differences between the results on the two grids
indicate that computations on finer grids are necessary to eliminate grid effects.

The fact that merging flow was not seen in two diniensions clearly points to the
mechanism responsible being linked to flow in the third dimension. Indeed,
examination of the flow in the lee of the hill shows that the flow remains largely
two-dimensional in the non-merging cases. In the merging case, however, there
is a large low-level cross-flow vortex (fig 10), the effect of which is seen in the
strongly reversed flow in the centre-plane downstream of the obstacle (figs 8(c),
9(c)). This evidently contributes to the early separation and subsequent
overturning of the low-level jet of fluid passing down the lee slope.

4. Conclusions

Computations of finiie depth stratified flows over two- and three-dimensional
obstacles have been performed with eddy viscosity turbulence models. The critical
Froude numbers obtained for the two-dimensional obstacles are in good agreement
with experimental data, and for the smooth obstacles follow the general trend of
Huppert & Miles' (1969) result. For the fence, the computed Frit is higher than
the theoretical result, which is consistent with the separated wake giving the body
an apparent length. In cases where breaking occurred, the breaking region was
always distinct from the separation zone, and we conclude that merging flow does
not occur in two dimensions. The precise nature of the turbulence model for these
two-dimensional flows containing breaking waves does not seem to be important.
Selected three-dimensional cases have been performed and the results compared
to those of recent experiments. They indicate that a mixing length model is unablf.
to adequately predict three-dimensional flows with breaking waves of the kind
considered here, and that a one-equation model is the minimum required. The
qualitative features of merging flow have been obtained for a particular ease, in
which a strong cross-flow vortex in the wake seems to be characteristic.
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Figure 1. Typical domain and boundary conditions for computation of flow
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Abstract

Standing internal waves are studied in a tank where a stable density stratification
has been initially introduced by a gradient of salt concentration. A primary wave
grows by parametric instability: a periodic modulation of the apparent gravity is
produced by a vertical oscillation of the tank. Two aspects of the dynamics axe
studied
-The mechanism of breaking that leads to turbulence
-A kind of developed turbulence forced by wave breaking in the permanent regime.
A succession of instabilities leading to wave breaking has been dearly identified: the
primary wave first excites a secondary wave at half its frequency by a mechanism
of parametric instability. The density isolines associated with this secondary wave
then locally overhang, and breaking occurs through a convective instability. In the
turbulent regime, a specific inertial range with k-3 density spectra is measured.

I Introduction
We study the complex dynamics of internal waves, by laboratory experiments performed in
relation with numerical simulations[l][2]. The aim is to generate something equivalent to
homogeneous turbulence, but in a strongly stratified situation: a wave field whose statistical
properties would be a genuine feature of the dynamics, independently from the details of
the forcing mechanism. In theoretical or numerical studies, some white noise forcing is often
introduced for this purpose. However this may violate the "natural" dynamics in some way,
and it is desirable to seek a more realistic mechanism of generation. The collapse of a strong
turbulence in a stratified medium is a possibility, but the resulting dynamics seems to be
somewhat different than in the regime of internal waves. Excitation by a wave maker selects

i" nlll I 1I" [ | 1 • i 1gl "l lf IPI I lie '"""n' I rl~l'i•-•,! |gliiltigll _in!!q u •n- _--,_ 1



i4

a particular structure associated with the driving mechanism. The parametric instability
that we use here seems to produce instead a more random field. Also this mechanism of
instability is interesting in itself, and it naturally occurs as a process of transfer from large

scales to smaller ones, for instance in the Oceans. Parametrically generated internal waves

in a continuously stratified fluid has been already realized by Mc Ewan [3] with similar
motivations, but in a more qualitative way, and in a somewhat different system. Our first
step is to study the paxametrically instability itself in next section. Then the secondary
instabilities leading to wave breaking will be described in section 3. Finally, an inertial
range of turbulence is characterized, and related to atmospheric studies.

2 Apparatus and Experimental Procedure

The continuous stratification is produced by salt concentration in a water tank with rect-

angular cross section. This tank is oscillating with a motion of vertical translation, so that
the apparent gravity and the Brunt Vaisala frequency axe modulated around their value at
rest. Dye is periodically injected at the tank bottom with the filling brine in order to mark

fluid parcels with successive densities. The resulting fluorescent dye strips are visualized
by a vertical laser sheet as they are deformed from their initial horizontal position. A

conductivity probe can be positioned at different depths, to get time series of the local
density.

3 The primary parametric instability

The free modes of standing internal waves have a simple sine structure, and are labelled
by the numbers of half wave-lengths in each direction (ax, ny, nz). We consider here only
modes with a purely vertical structure (ny=O) as visualized in Fig.1. Each mode can be
considered as an oscillator with a natural frequency W = Ncosa, where N is the Brunt

Vaisala frequency and 0 the angle of the wave-vector with the horizontal. An oscillator is
parametrically excited when its natural frequency is in a "tongue" around half the exciting
frequency. Therefore all the modes with the same 0, the same ratio of vertical to horizontal
wave numbers, are in principle excited together. This is the case of the different modes of
Fig.1, and the complex imbrication of the instability tongues is represented in Fig.2. This
contrasts with the case of surface waves or interfacial waves[4][51, for which the different
modes are well separated in frequency. The instability theory has been applied also to the
case of a continuous stratification[6], but the actual dynamics involves wave breaking and
is much more complicated, as discussed next.

4 Secondary instabilities leading to breaking

Indeed these primary modes are always unstable, and a well organized internal wave packet
develops: this secondary wave, with frequency half the main mode, grows also by a para-
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* Figure 1: Examples of Pure modes (two-dimensional in the vertical plane) in the phiase

of linear growth, obtained with very close experimental conditions (visualization of the

deformed isodensity lines by dye strips) a) Mode (1, 0, 1), b) Mode. (2, 0, 1), c) Mode (4,
0,2)
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metric instability. The excitation is now due to an oscillating tilt of the wave-packet, and
a corresponding modulation of natural frequency, entrained by the primary wave oscilla-
tion (Fig.3). This wave packet quickly grows until local overturning of the density occurs.
The locally unstable stratification then rapidly leads to convection and turbulence. The
convective rolls are mainly aligned with axis transverse to the vertical plane of the main
wave (Fig.3). This process of wave breaking contributes to the saturation of the primary
wave instability. Near the instability threshold, an intermittent behavior results from suc-
cessive periods of instability growth and decay. This dynamics is governed by weak wave
interactions, and is strongly dependent on particular resonant interactions, which are very
sensitive to the experimental conditions.

5 A turbulent inertial range associated with wave
breaking

We observe that turbulent time spectra measured by the conductivity probe contain a well
defined range with k-3 density spectra (Fig.4). We interpret the measured time series
in terms of spatial fluctuations along the vertical direction by using a Taylor hypothesis,
although the probe has no motion. We argue indeed that the fine scale structures, which
are mostly horizontally stratified, are transported by the vertical motion of the main waves.
By contrast with the spectral behavior at moderate frequency, the slope and level of this
k-' range depends only very little on the experimental conditions: this seems to be a
quite general feature of the turbulence resulting from wave breaking. Beyond the viscous
dissipation wave number, an advective sub-rauge with k-' spectrum is expected, since the
Prandtl number is very high. This may be observed in our experiments, but it is strongly
perturbed by effects of mechanical vibrations.
A simple interpretation of such k-3 spectra is that the non-linear effects have the samne
strength at all scales:i.e. the Froude number is of order unity at each scale. Similar
energy spectra are observed in the "buoyancy subrange" of the atmosphere [7], and has
been explained by turbulent models [8]. However the interpretation of these atmospheric
measurements is still controversial, and our experimental results, together with associated
numerical computations [2] could new insight in this problem.
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excitation frequency), while the main peak is excited by resonant interaction, as well as
a continuum of low frequencies. The k-3 slope in the "inertial range"is indicated. High
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I Introduction

Wavebreaking is characterized by the onset of turbulence which leads to the decrease
of the wave energy, either dissipated or irreversibly transformed.Indeed in the case of
internal gravity waves, breaking also results in irreversible vertical mixing of matter. This
is therefore an important mechanism of vertical heat transfers and chemical transport in
stably stratified media like the oceans or the atmosphere (e.g. Muller et al. 1986).

The occurence of breaking is not limited to internal waves with very steep initial
isodensity lines. For internal gravity waves of moderate amplitude, the breaking event
itself is preceded by a slower phase of wave steepening. For instance, a propagating wave
in a medium with non-uniform properties progressively steepens and breaks near critical
layers, where the propagating velocity with respect to the medium vanishes (e.g. Winters
& D'Asaro 1989, Winters & Riley 1992). For standing waves considered here, this process
cannot occur, but a mechanism of resonant interaction between different modes can transfer
energy to smaller wavelengths. It results in a progressive increase of the local slope of the
isodensity lines, eventually leading to breaking. Such standing waves correspond to the case
of a confined domain, e.g. laboratory tanks. A periodic primary wave is then forced by a
paddle ( McEwan 1971, Orlanski 1972) or by parametric instability (Mc Ewan & Robinson
1975, Thorpe 1994c, Benielli & Sommeria 1994). Breaking is indeed commonly observed
in such experiments. In some other experimental conditions, with lower forcing amplitude,
the secondary wave is st abilized by viscous effects, so that the non-linear transfers between
a limited set of modes can be studiedin isolation, and found in good agreement with weakly
non-linear expansions (McEwan et al. 1972). However, the succession of events leading
to the wave breaking itself are difficult to analyse precisely in laboratory experiments.
Therefore direct numerical simulations can be very useful to analyse these mechanisms and
compare them with theoretical models. Previous studies (Orlanski & Ross, 1973) showed a
good agreement during the initial stage (i.e.: before wavebreaking) between experiments,

1



numerical results and analytic solution (up to second order in amplitude). However the
mechanisms of wave breaking itself were not analysed because of a low resolution. This
is the aim of the present paper: we start with a simple standing wave and study the
succession of instabilities that lead to wave breaking and the properties of the turbulence
next induced.

We briefly present the numerical model in next section. In section 3, we explain the
presence of perturbations by the structure of the standing wave. The loss of coherence is
described in the next section. The transition to turbulence is then analysed in the last
section.

2 Numerical Model

We solve the two-dimensional Navier-Stokes equations in the Boussinesq approximation,
using a pseudo-spectral method (Orszag 1971). The domain is a square in a vertical plane;
in order to model the boundary conditions of laboratory experiments, normal velocities
at the walls are set to zero. This is compatible with a pseudo-spectral method if syinne-
try boundary conditions are introduced. These symmetry properties allow use of Fourier
transforms, involving only sines or cosines, to compute spatial derivatives (e.g. Brachet et
al.1988). Integration in time is performed using an explicit third order Adais-Bashforth
scheme and the diffusion terms axe calculated explicitly. Resolution is 1292, with a few
test runs at 2572 . We use Cartesian coordinates (x, y), with vertical coordinate y directed
upwards. A vertically displaced fluid particle oscillates with the buoyancy (Brunt-VUsiilfl)
frequency N, defined by N 2 = - , where g is the acceleration of gravity, and p the basic
density profile. We assume that IV is constant, so that P is linearly dccreasing with the
vertical coordinate y. In the Boussinesq approximation, this basic density profile, as well
as the superimposed density fluctuations p*, stay close to the mean density po. The condi-
tion of incompressibility is then assumed, and taken into account by introducing a stream
function 0, related to the two velocity components u. and u, by u. = O8,, u, = -0db.
We solve the Boussinesq equations in terms of the vorticity --AO and the reduced density
fluctuations p' = (g/po)p*

(1) duAb + J(Amk,Vb) =- ap'+ v(-1)n•+lA"+ltk
"(1 (t~ 1+ +A•

(2) &tp' + J(p',) = -Nd20.0 + -
Pr

where the non linear advective terms are written by means of the Jacobian J, and the
Prandtl number Pr is taken equal to unity unless otherwise specified. The numerical
computations are performed in a square of side 7r, with a Brunt-Viisa•B frequency N =
1, but the times will be often represented in units of the Brunt-Viisili period '1 v =
2ir/N. Any corresponding physical situation can be represented by these calculations with
appropriate choices of length and time units. Dissipation is modelled either as an ordinary
diffusion, using a Laplacian term (n=l) or by a bilaplacian (n=2), which better restricts
the dissipation to the highest wave vectors. Before each run. the viscosity is adjusted to
get its minimum possible value for a given spatial resolution.
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3 A nearly periodic oscillation

The aim of this Atudy is to observe the evolution of a simple staading wave, until breaking
occurs, It is therefore natural to choose an initial condition with an unperturbed density
field, and the velocity field of a linear standing wave (normal urode), with stream function,
*. ,) = Gasn;(h x)sin(k,• ) and density, p'(x, y) = 0 represented in Fig. 1 for different

choices of kI, kv.I This velocity field will displacu, the iso-density lines, and the buoyancy
restoring farce will then reverse the velocity field, leading to periodic oscillations. The
linear solution foor this standing wave is

k N 2

(3) p'(x, y, t) = -a M-- cos(k, x)sin(k, y)sin(wi)'C

The frequency w is given hy the linear dispersion relationship w = N IcosOl = N I&/Ikl
where 0 is the angle of the waie-vector with the hor;zontal direction. This stanaing wave
can1 be seen as the superposition of foar pairs ot plane waves with frequeanies +w and -w,
and wave vectors (k,, k),. (-k-. -), -- ), (-k,, -ks). Fur simplicity, we will refer to
this solution as the mode -z (.'%, ks). Wh:le s single piane wave is an exact solution of
the non-linear equatious (1-2) (in an unbounded dmain), the standing wave (3) is only a
solution of the linearized equations (the Jacobiaai vanishes in the hydrcdynarnic equation
(1) but not in the densxi;y eqoution (2)). Therefore, 6h-± evoiutiou of the initial condition
involves non-linear interactions, and the actual solution will progressively departs from the
linear approxnimation.

4 The growth of a prmnary instability

A remarkably organized perturbation is progressively developing upon the standing wavy,
and its structure is best represented by the vorticity fiela (Fig.2). It is a straight diagonal
band cantered at the extrenmmn in strearn function of the primary wave. The perturbation
is advect,.d by the primarxy wtve into a rocking motion (see Fig.2.c). In the same time,
the pertarbation is itself a wave, which happens to have the frequency half the pliniary
wave frequency: we see indeed in Fig.2a and c thiat after two periods of the primary wave,
the initiai structure is restored (although it is soniewhat distorted b'v the intera.tion with
another unstable moue). In fact these distcrsions result from a local parametric instability
.nstability induced by the lecal rocking motiou of the primary wave. The mechanism it self
has been previously described by McEwau& Robiuson (1975). However our simulations
revealed the ipantial structure of tne iuntability. Furthermore we explained this structure in
terms of a wave packet of small wavelength oscillatiag wiLh half the primary wave frequency,
which correrpond in fact to the parminetric asymptotic branches obtained from the resonant
interaction thVory. We icund a good agreement between this theoretical approach which
predicts the domni-an':e of parametric instability for a high frequency Primary wave and
our numerical results (Bouruet-A4.bcrtot et al, 1994).

5 Trauisition to turbulence

The amplitude of this perturbatioa grows expeoieutially until the density field overturns
(Fig.2d), producing small regions of stztic instability. This configuration appears not to

9

s i " -!-i .. . ....... .. .. .. ........ .. ... ..... . . .. . .



be immediately dynamically unstable, and the breaking seems rather to be initiated by
the instability of the shear associated with the perturbation (Fig.2e). Note that at this
final stage, high frequency components (much higher than the Brunt Viisila) develop
and burst at the time of breaking which must be attributed to a form of turbulence, or
possibly rapidly advected waves. Visualizations of internal wave breaking in a laboratory
experiment (B6nielli & Sommeria 1994) give evidence of the remarkable similarity, which
indicates that our two-dimensional computations already capture some essential aspects of
the dynamics. These successive instabilities lead to the developpment of the wavenumber
energy spectrum (fig.3). Moreover our results suggest that a universal behaviour is obtained
during the turbulent stage where the slope is approximately equal to -3 whatever the
wave amplitude. Note that such a slope is predicted by the theory of Shur (1962) further
developped by Lumley (1964) for stratified turbulence (i.e.: in the buoyancy subrange).
Furthermore these results can be corrrelated with atmospheric spectra which also exhibit
a k; 3 dependency.

The wave breaking is associated with a decrease of the total energy, as shown in Fig.4.
The energy decay is remarkably independent of viscosity, so that the dynamics are indeed
controlled by inertial effects, although energy is dissipated by viscosity and diffusion (as
in the cascade of homogeneous turbulence). A similar behavior is observed whatever the
amplitude of the primary wave, but the perturbation has a different wave-length. This
scenario for wave breaking is quite general for modes with fairly high frequencies, for
instance (5,1). By contrast, modes with low frequency, for instance (1,5) with period

'/26STnv, evolve quite differently. In that case, wave breaking also eventually occurs, but
density overturning seems rather to be initiated by perturbations at frequencies higher
than the primary wave. This difference of behavior can be related to the linear stability
diagrams of the primary wave, obtained from the resonant interaction theory.

6 Conclusion

The evolution of an internal gravity wave has been investigated by direct numerical com-
putations. We considered the case of a standing wave confined in a bounded (square)
domain, a case which can be directly compared with laboratory experiments. We observe
tiat breaking eventually occurs, whatever the wave amplitude: the energy begins to de-
crease after a given time because of irreversible transfers of energy towards the dissipative
scales. The wave breaking itself is preceded by a slow transfer of energy to secondary
waves by a mechanism of resonant interaction. The nature of the events leading to wave
breaking depends on the wave frequency (i.e. on the direction of the wave-vector); most of
the analysis is restricted to the case of fairly high frequencies. The maximum gCowth rate
of the inviscid wave instability then occurs in the limit of high wave numbers, We observe
that a well organized secondary plane wave packet is then excited. its frequency is half the
frequlncy of the piiriary wave, corresponding to an excitation by a parametric instabil-
ity. Once this secondary wave packet has reached a high amplitude, density over-turning
occurs, as well as unstable shear layers. A mechanism of shear instability then leads to a
rapid transfer of energy towards dissipative scales. The possibility of applying these results
to the breaking in raore general internal wave fields deserves further investigations. The
presence of a periodic primary wave, rather than a more complex wave field, is probably
essential to ;eej Lthe secondary wave packet by parametric instability. Propagating waves
in an infir:.itc domain, or in a horizontal channel (with vertical confinement) could probably
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display similar properties. Since periodic internal waves axe produced by the interaction of
oceanic currents with bottom topography, such a formation of bands may lead to observable
features in the density field and positions of mixing events. Applications to other waves
with similar dispersive properties, in particular inertial waves of rotating fluids should also
be considered.

This work has been supported by D.R.E.T. (Contrat no 90/1650/A000). P. Bouruet-
Aubertot currently benefits from a financial support by D.R.E.T.. Part of the calculations
have been performed on the Cray 2 of CCVR, thanks to computing time allocated by
C.N.R.S. (Dept of Physical and Mathematical Sciences) and by Ministry of Education
(D.R.E.D. Matter Science Dept). Finally we thanks S.A. Thorpe for pertinent comments
on tbhis work.
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Figure 1: Different initial conditions for a standing wave. (a) total density field, (b)-(d) vorticity
field, (b) k" (5,1), () "= (1, 1), (d) " (1, 5)
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Figure 2: Development of the secondary instability in the form of a plane wave packet (initial

condition (5) with E = (1, 1) and a = 0.256): successive snap shots of the vorticity field (1st

column) and the total density field (2nd column). For the vorticity fields, the contribution in the

Fourier mode (1,1) has been removed in order to better Visualize the perturbation itself (and the

represented iso-values depend on the extrema, with solid lines for positive values and dashed lines

for negative values). In the last column, the corresponding position of an analogous pendulum is

indicated for comparison:it is parametrically excited by the vertical oscillation of its support. (a)

t=60.4 Tsv(42.5 periods of the main wave have occurred since t=0); (vorticity range [-.20; .36]).

The deformation vanishes while the velocity (and vorticity) is extremal. The predicted inclina-

tion (25) of the perturbation wave crests 01 = 20.70 is indicated. (b) t=62.1 TBv, 1/4 period

later, the pattern has been rocked by the main wave and reaches its minimum slope. (vorticity

range: [-.30; .32]). The analogous pendulum rises with its support at the upper position (its rising

motion then benefits from a low apparent gravity). (c) t=63.2 TBv, the structure of (a) is recov-

ered (with the development of a secondary perturbation7f-(votticity range [-.39; .54]) (d) t=69.5

Tsv ( 49 periods of the main wave have occurred since t=0) The density is extremal and iso-lines

first overhang, while vorticity perturbation is weak (a) t=73.7 TBv The secondary wave is now

strongly disrupted.
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Figure 3: Density energy spectra versus vertical wavenumber obtained for the primary wave k =

(1, 1), (a)-(u) amplitude of the wave .256, (c)-(d) a = .4, (a)-(c): kinetic energy, (b)-(d): potential

energy, density energy spectra averaged over 10 periods of the primary wave are represented at 4

differents stages: (1)-(2) during the growth of the instability, (3) during wavebreaking, (4) during
the very last stage, when the energy has steeply decreased.
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INTERNAL WAVE BREAKING AN.J THE NONLINEAR
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1. ABSTRACT

In Potylitsine and Peltier (1993) we began an examination of the nonlinear excitation
of outgoing radiation, in the form of vertically propagating internal waves, induced by
critical layer breaking. On the basis of 2-D numerical simulations, it was demonstrated
that the most efficient mechanism for the excitation of secondary radiation is through the
direct stimulation of a shear layer from below with an incident internal wave. By employ-
ing a sufficiently high level of resolution in our numerical simulations we were able to trace
the process of internal wave breaking in the critical level through a KH-billow intermedi-
ate state into a regime in which the wave dynamics is dominated by the transition from
"trapped" KH-instabilities to propagating waves. Both observational and experimental
evidence, however, suggests that KH-billows commonly collapse into turbulence long be-
fore they reach the stage in their evolution when outgoing radiation is predicted by the
2-D simulations. In the present paper we test the 2-D nonlinear "forced" KH-wave states
against fully three-dimensional infinitesimal perturbations. By restricting our analysis to
disturbances which grow quickly compared to the temporal variation in the background
KH-wave we are able to reduce our problem to standard elgenvalue form.

2. THE MODEL

In this section we will briefly discuss the model used to examine gravity wave break-
ing processes in the vicinity of a stratified shear layer with the initial profile of horizontal
velocity specified by:

U(z ) U0 taub ( Z
where U0 = 10 ms- 1 and zo = 200 m. We choose a constant background stratification
with

N 2 
= gd [in(0(z, 0))]- = g # o- =constant (2)

az V0oo no
with a reference potential temperature Oo0 = 300'K and a gravitational constant g -
10 ms-2. Parameter He can be interpreted as the potential temperature scale height
H0o = g/N 2 . Thus the initial nondimeasional potential temperature profile is:

®o zJz
()(z+0) = i 1 =1+-- (3)

where J is the minimaum mean state Richardson uumber:
N 2  Go zo(

Ri0 = = 4 o0He (4)

ýýgjjjiii1' 11-ýr ~



and G is the nondimensional gravitational constant G = gzo/UO2. With the above choices
for U0 and z0, C = 20.

In this study we assume that motion is two-dimensional, viscous and heat-conducting
and that the Boussinesq approximation is valid. Adopting a streamfunction 0 and vor-
ticity w representation of the Navier-Stokes equations and using potential temperature 0
instead of density, the equations of motion take the form, e.g. Smyth and Peltier (1991) :

___= J(w,0) +Ri%- - + Re-1 Aw (5)
80
o= J(0 ,yV) + (RePr)-f'Aw (6)

W= A4 (7)
where J(f, g) is the Jacobian operator:

Of Og Og of (8)
Ox Oz Ox az

This system has been nondimensionalized in a manner consistent with (1) and (2).
Nondimensional parameters appearing in the model equations are the Reynolds num-
ber Re = zoUo/v, the Prandtl number Pr = v/k and the bulk Richardson number
Ri = gzoOg/OoUo02 = HeJ/4zo, where v is the molecular viscosity and k is the thermal
diffusivity. By choosing IHe = 4zo we obtain J = Ri for this model. We seek solutions of
(5) - (7) which are periodic in the horizontal direction with fundamental wavelength L
which is the horizontal length of the computational domain and fundamental wavenumber
a = 27r/L. Accordingly we assume that the dependent fields may be written as truncated
Fourier series:

N

f(x,z,t) = E F.(zt) exp('i' 1 ) (9)
is -N

in which f may represent w, 4 or 0. At the upper and lower boundaries (z = 0 and
z = H) of the computational domain, we impose no-slip, isothermal boundary conditions,
namely:

w=;0; ao 0 (10)
Ot

The model is forced by specifying a vertica•jvelocity perturbation on the lower boundary
(z = 0). For convenience, we assume that the perturbation consists only of the funda-
mental (N = 1) mode. This velocity perturbation may be written:

w(z, 0) = Wo cos(az) (11)

This perturbation may be thought of as the perturbation arising from the flow of a fluid
at speed Uo over an infinite corrugate~d lower boundary:

h(x) ; -sin(az) (12)
aU0

3. MAIN RESULTS FROM THE 2-D SIMULATIONS

We have performed a sequence of numerical simulations using the model described above
in order to investigate internal wave "breaking" process near the critical level. In this set
of 2-D calculations we forced an initially stable (J > 0.25) critical layer from below by

_____________
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Fig. I Unstable region developed by the nonlinear GW-CL interaction for times of (a) 7.96;
(b) 10.35 and (c) 11.14 wave periods. The model parameters are: J = 0.5; Ri = 0.5;
Re = 4000; Pr = 1; a = 0.5. Dashed, solid and dotted lines show areas with Ri < 0; 0.25
and 0.5, respectively.

an incident internal wave and observed the evolution of the flow, associated with the
gravity wave critical level (GW-CL) interaction. As we expected, the deporition of mo-
mentum into the mean flow caused by gravity wave "breaking" near the critical level
changes the stability of the mean state mainly by increasing the velocity shear below the
critical level that, in turn, decreases the mean state Richardson number. If the momentum
absorbed by the mean flow is large, the mean state Richardson number below the critical
level may become small enough (Rio --+ J < 0.25) to destabilize the GW-CL interaction.
In other words the nonlinear GW-CL interaction can develop an unstable region in the
vicinity of the critical level (Fig.i) with subsequent generation of Kelvin-Htelrnholtz (KH)
instabilities (Fig.2).

4. A THEORY FOR THE STABILITY OF KELVIN-HELMHOLTZ WAVES.

In this section we outline the method developed initially by Klaassen and Peltier (1985)
for analyzing the stability of two-dimensional finite-amplitude KH-waves against fully
three-dimensional infinitesimal perturbations. As the flows being considered are no longer
2-D, we must abandon the vorticity-streamfunction formulation and use the full system
of Navier-Stokes equations in terms of velocity id, pressure p and potential temperature 0
fields (Boussinesq approximation):

0- + (i -V) = -Vp + RiO + Re-'Ai (13)

V-9 = 0 (14)

-- + (ii. V)O = (RePr)-'AO (15)

The nondimensional parameters Re, Pr and li appearing in (13)-(15) have been defined
previously in (5)-(7). In the present analysis we will consider only those disturbances that
have the same streamwise periodicity as the basic state wave. Furthermore, we assume

-J
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Fig.2 Potential temperature field at (a) 10.35; (b) 11.94; (c) 13.53 and (d) 15.12 wave
periods illustrating the KH-billows growth in the initially stable shear layer forced from
below by the single harmonic of an internal wave whose horizontal wavelength corresponds
to the length of our domain L. The model parameters are: J = 0.5; Ri = 0.5; Re = 4000;
Pr = 1; of = 0.5.

that the superimposed 3-D perturbatioims evolve on a faster time scale than does the
2-D nonlinear wave, so that the time dependence in the latter may be neglected. These
assumptions imply that the velocity, potential temperature and pressure fields in 3-D flow
have the Floquet form:

f x, y, z, t) = F(x, z) + ef(x, z). e('+d) (16)

where F(x, z) describes the 2-D "background state" and f(x, z) is periodic in x with
period 21r/a; a, b and d are the complex growth rate and real streamwise and spanwise
wavenumbers of the disturbance, respectively, and e is an ordering paramneter. We are
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Fig.3 Convergence of the growth rates o for the most unstable longitudinal mode of the
Re = 4000, Pr = 1, Ri = 0.5, a = 0.5 KH-wave at the time equal to 11.94 wave periods.
The numbers M refer to the truncation level where 21A1 + v < M.

going to investigate here only the longitudinally symmetric disturbances with b = 0.
Substituting (16) into the Boussinesq equations (13) - (15) we obtain, at order c:

afl = -N. - W$L, - (CrUl), - UýTh - P + Re-'AOi (17)

a• = -0Ui - WOý - idP + Re-'A3 (18)

ow --Uz1 -_ _ (•), - i.,z - p2 + Ri4 + Re-C'Az (19)

aD = -06 - - ki) , + (RePr)-'AO (20)

0 = &i.+idO+tbi (21)

in which 0ý, 0, tb, 0 and P are the (x, z)-dependent parts of the streamwise, spanwise
and vertical velocity, potential temperature and pressure perturbations, respectively. A
diagnostic equation for pressure is obtained by combining (17), (19) and the continuity
equation (21):

AP = Ri,-2,,+Wt,,+Wa ~b (22)

We replace (21) with (22) and find as a result that (18) decouples from the remainder of
the system. We axe thus left with four equations (17), (19), (20) and (22) for the dependent
fields fl, tb, 0 and fr The boundary conditions at z = 0 and z = H are:

- -0 0 ; (P = Re-t (23)
0 z Oz -z (z2

In order to convert the described above system into an eigenproblem, we must discretize
the (x, z)-dependeivce of the solution fields. This is accomplished via the Galerkin method,
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Fig..4 A comparison of the wavenumber dependence of the growth rates o for the most
unstable longitudinal mode at various times in the evolution of the Re = 4000, Pr = 1,
Ri = 0.5, a = 0.5 KH-wave. Labels (1), (2), (3) and (4) correspond to 13.53, 15.12, 11.94
and 10.35 wave periods respectively.

using the expansions:
L M L M

ft= U \ ••; WX =A (24)
A=-L u=O A=-L v=O

L M L M

A=-L u•-0 A=-Lv=O

ii which

F%. e ( Ho G,\. -= C s in (V7HZ)f26)

Following Klaassen and Peltier (1985), we employ the truncstion scheme:

L(V) M 2 Vi (217)
where M is the "truncation paaxmeter". If we substitute (24) - (25) into the perturba-
tion equations (17), (19), (20) and (22) and eliminate pA• using (17), (19) and (22), we
transform the system consisting of (17), (19), (20) and (22) into the foilowing set of linear
algebraic equations for the coefficients uk, wx, and 0\,:

Crukm = (UU)"y uA + (UW)• • wA,, - ( 0 .,, (28)
/ W U L; u k g W k u •

O'wk = (WU)kA - U, + (WW)k . wA, + (Wl)kA0 ' (29)

= (2U)k, ,u, + ,..w•, + (TT)•." O,(30)

Ak
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Fig.5 Evolution of the vertical heat fluz correlations Tw' for the most unstable longitu-
dinal mode of the Re = 4000, Pr = 1, Ri = 0.5, a = 0.5 KH-wave. Vertical heat flux
correlations are shown for 11.94 (a); 13.53 (b) and 15.12 (c) wave periods. The spanwise
wavenumber d = 3.5 was chosen to be near that of the fastest growing 3-D mode. Note
the correlation of the convective activity (positive heat flux) with the primary portion of
the super adiabatic region (shaded area) where N2 < 0.

Explicit expressions for the four-dimensional coefficient arrays (UU), (UW), etc. may
be found in Smyth and Peltier (1991). The system (28) - (30) may be written in the
form:

atDi = AijDj (31)

in which A is a constant matrix and (D is the concatenation of (unA, w\,, 0A,). Eigenvalues
and selected eigenvectors of A axe computed using subroutines from the IMSL library.
Once the KH-wave state whose stability is to be tasted has been chosen and the horizon-
tal longitudinal wavenumber d and the truncation level M have been specified, the matrix
A may be computed and the eigensystem (31) solved.

5. THREE-DIMENSIONAL STABILITY ANALYSIS: RESULTS.

All results of the stability analysis presented here have been calculated with the trun-
cation level M = 25 appeared to be the most efficient one for our simulations. In order
to justify our choice we present the dependence of the eigen value curves upon the trun-
cation level M (Fig.3). In Fig.4 we show the growth rates a of the dominant longitudinal
modes as a function of the spanwise wavenumber d at selected times during the simulation
described in section 3. As in previous studies of a similar nature (Klaassen and Peltier
(1985), o(d) exhibits a strong local maximum in the vicinity of d = 3. This indicates a
secondary instability with a well-defined spanwise wavelength which could lead the flow
into a complex, but nevertheless laminar, three-dimensional state.

Fig.5 shows the contours of vertical heat-flux correlations ýW for the most unsta-
ble longitudinal mode superimposed or'. the shaded superadiabatic regions (SAR) where
N' < 0. It can be seen that the most unstable longitudinal mode is associated with con-
vective activity (positive heat-flux) iii the evolving statically unstable regions that develop
above and below the core of the vortex.



6. CONCLUSIONS.

The deposition of momentum into the mean flow due to internal wave "breaking" near the
initially stable critical layer (J > 0.25) can lead to the development of a dynamically un-
stable region with subsequent generation of growing Kelvin-Helmholtz (KH) instabilities.
By performing appropriate 3-D linear stability analysis we have tested these "forced" 2-D
KH-waves for stability against 3-D infinitesimal disturbances and have ound that they
are most unstable against longitudinal modes, which are confined to the local statically
unstable regions induced by the roll-up of the nonlinear wave. We have shown that these
longitudinal modes achieve their largest growth rates approximately at the same time
as KH-billows attaia their maximum amplitude but the growth of these 3-D instabilities
is initiated earlier in the KH-wave's evolution. Our conclusions concerning the localized
origin and intrinsic three-dimensionality of the unstable longitudinal modes are consistent
with the theoretical results derived in Klaassen and Pettier (1985) for "pure" KH-billows.
Since our analysis revealed that "forced" KH-billows are highly unstable against 3-D in.-
finitesimal disturbances we expect that the momentum deposition into the critical level
caused by the "breaking" of the incident internal wave will more likely engender a cascade
of energy into small-scale turbulent mixing than lead to reradiation from the shear layer
of outgoing internal waves. Although it is clear from our discussion that the instability
we have described here is strongly related to the transition to turbulence in "forced"
KH-waves, the precise way in which this transition proceeds remains unclear. We are in
the process of investigating this question by performing three dimensional fully nonlinear
simulations of gravity wave "breaking" near the critical level.
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(Winters and Riley, 1992). And nonlineas wave-wave iterations can lead to wave breakdown.
as demonstrated, e.g., in the laboratory experiments of McEwan (19W3).

Using linear stability analysis, Drazin (1977) and Mied (1976) have shown that an internal
wave of any amplitude, propagating in a uniform environment with tao ambient current shear,
is unstable to two-dimensional disturbances. Hence a piopagating wave may break down on its
own, independent of the mechanisms mentioned above. In the work presented in this paper, we
examine the breakdown of a freely propagating internal wave in a uniform, nonrotating, nons-
hearing environment. It is thought that a better understanding of this breakdown process can
be used as a basis for understanding the possibly more complex situations discussed above. To
do this we first extend the stability analysis of Drazin and Mied to consider three-dimensional
pertorbations. The results of Winters and Riley for instability of a wave approaching a crit-
ical laýer suggest the importance of three-dimensional perturbations. We then perform direct
numerical simulations of this three-dimensional, unsteady breakdown process. Of particular in-
terest is hvw buickdown occurs, e.g., it is initially two- or three-dimensional? Does it occur due
to wave overturniug or shear instability? Due to turbulent mixing, how much wave energy is
ultimately depositcd in the background density field as potential energy?

2 Stability analAysis

We consider a fluid satisfying the Navier-Stokes equations subject to the Boussinesq approxima-
tion. The ambient conditions consist of a fluid at rest with a uniform, stable density gradient,
characterized by the buoyancy frequency N, defined by

N2 = -- > 0. (1)
pý dz

Here g is the acceleration of gravity, po a reference density, and ý(z) the ambient density, assumed
to depend only on the vertical coord-Tui.e z. An internal wave is assumed to be propagating
through this fluid in the x-z plane, with vertical velocity given by

Awa
tb(x, z, ) -- cs(k z+ rnz - w•) (2)

m



Similar expressions exist for other flow variables. Here A is the wave amplitude, (k, m) is the
wave number vector, and w is the wave frequency, which must satisfy the dispersion relation

S= (3)

Note that, neglecting viscous and diffusive effects, this single wave is an exact solution to the
equations of motion for any amplitude A, as the nonlinear terms are identically zero.

We consider a small perturbation to this base wave, e.g., writing the total vertical velocity
as

W = l, + w'. (4)

A new coordinate system is defined to move with the wave, and is rotated such that Z' is in
the direction of the wave current, and z' is in the direction of the wavenumber vector. Plugging
this assumed form into the original equations, the resulting equations are linearized in terms
of the perturbation amplitude. Furthermore, only normal mode solutions are sought, hence
neglecting the contribution to the solution from the continuous spectrum. These assumptions
can be ultimately tested by comparing the predictions of stability theory with the results from
the direct numerical simulations.

The resulting stability problem is quite different from that for a stratified shear flow, i.e., the
Taylor-Goldstein problem (Drazin and Reid, 1981). Squire's theorem does not apply. Further-
more, because of the periodic nature of the problem in the z2-direction, Floquet theory (Bender
and Orszag, 1978) is needed to simplify the form of the resulting equations. The application of
Floquet theory gives an eigenvalue problem in 40 = z' - wt for the eigenvalue a, the complex
growth rate. The problem is defined in terms of the parameters describing the base wave, i.e.,
the nondimensional wave amplitude and wavenumber vector direction, and the wave number
(a, 0) of the disturbance, corresponding to the (x', y) directions. The Floquet parameter is
chosen in order to examine perturbations which are periodic over the same wavelength as the
base wave, or a rational fraction of this wavelength. The resulting eigenvalue problem is solved
by Fourier expansion, taking full advantage of the symmetry properties of this problem.

The stability problem is solved for several different wave propagation angles, namely 300, 450,
600, 80', 850, and 90* to the horizontal. Furthermore calculations are performed for various wave
amplitudes, nondimensionalized by the amplitude of a wave at incipient overturning, ranging
from 0.1 to 1.1. The Prandtl number is taken to be 1, and the Reynolds number, based upon
the wavelength and maximum wave velocity, ranges from about 300, for comparison with direct
numerical simulations, to up to about 106, an approximately inviscid, nondiffusive case.

Typical results are presented in Figure 1, which gives contours of maximum growth rate in
the (a,j3) plane for waves propagating at 45' to the horizontal, with nondimensional amplitudes
ranging from 0.1 to 1.1, and a Reynolds number of the order of IV. For the smaller-amplitude
cases, the maximum growth rates are for two-dimensional perturbations (f, = 0). As suggested
by Mied, the instability for small amplitudes can be shown to be a ,sonant interaction, the
different resonant curves producing the rib-like structure seen in the curves. As the amplitude of
the wave is increased, other instability modes appear, especially ones which are three-dimensional

(0 0 ,). 1'- ,le lr st aauli-ude case, the growth rates of the t--ee-,imension&. - ai m are
comparable to the two-dimensional ones, suggesting a fairly complex breakdown process.

3 Numerical simulations

In order to numerically simulate internal wave breakdown, we solve the initial value problem
consisting of a freely-propagating internal wave train with an initial perturbation superimposed.
We assume that the flow satisfies the Navier-Stokes equations subject to the Boussinesq ap-
proximation. Periodic boundary conditions are employed in all three spatial directions. The
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periodicity length in any direction is taken to be an integer multiple of the periodicity length
of the base wave in that direction, and depends on the specific problem considered. For initial
conditions, we superimposed the base wave and a l-w-level perturbation. The perturbations
considered are of two types:

i) low-level, broad-banded noise;

ii) low-level, broad-banded noise plus an eigenfunction taken from linear stability theory.

The first type (i) is meant to simulate background noise. In the second type (ii), the eigenfunction
is generally taken as the most unstable one predicted by linear stability theory. Initialization
with (ii) allows a more careful investigation of a particular instability than for (i), since in the
latter case several competing modes of similar growth rates can be excited.

In order to solve the equations numerically, the nonlinear terms are advancd in time using
a second-order Adams-Bashforth method. The viscous and diffusion terms are treated exactly
using an integrating factor, while the pressure term is computed by the projection method.
Fourier Galerkin methods are employed 1o approximate spatial derivatives, with an ellipsoidal
wavenumber truncation at two-thirds of the nwaximuin wave number in order to eliminate aliasing
errors (Canuto et al., 1988). Simulations were performed on up to 128x 64 x 128-point compu-
tational grids in the z-, y-, and z-directions, respectively. The simulations were usually started
on a smaller grid, e.g., with 32x32x32 grid points, and then regridded to a finer mesh as the
wavenumber spectrum broadened.

A number of simulations have been performed at different base wave amplitudes and prop-
agation angles [Lombard (1994)]. We present here a particular case that has many of the
characteristics of the other simulations. In this case the base wave is propagating at 451 to
the horizontal, and has a nondimensional amplitude of 0.5. The Reynolds number, based on
the wavelength and maximum velocity of the base wave, is 311, and the Prandtl number is set
to 1. The linear stability theory results for this case are similar to those given in Figure 1c.
(Note that the Reynolds number for Figure Ic is 106. The principal effect on linear instability of
lowering the Reynolds number is to greatly reduce the growth rates for larger values of a and 0.

In the stability calculation for the Reynolds number of 311, no unstable modes are observed for
ot greater than about 6 or ,3 greater than about 5.) For this case, the fastest growing instability
is two-dimensional, although the instability is fairly broad-banded with significant regions off
the a-axis. The computational domain in Fourier space is adjusted so that approximately the
fastest growing mode is excited, as well as a number of its harmonics and a fast-growing oblique
instability. Low-level, broad-banded noise is employed for excitation.

Initially, after some adjustment, the perturbation energy begins to grow at an approximately
exponential rate for several decades. Here the growth rate is 0.099, close to the value of 0.108
predicted from lineax stability theory for the most unstable mode, and indicating that this mode
is a main participant in the instability process. This exponential growth proceeds until the base
wave begins to lose a significant amount of its energy.

In order to understand the breakdown process, it is useful to first visualize the flow. Figure
2 contains a sequence of plots depicting the evolution of the wave at six different times, where
time has been nondimensionalized by 1/N, and lengths have been nondimensionalized by the
wavelength of the base wave. The plots are two-dimensional slices of the flow field in the x-z
plane (the plane of the base wave). The velocity field is indicated by vectors, the density field
by contour lines, and shading is used to indicate regions of density overturning (i.e., where
dp/dz > 0). Note that the wave period is 8.89 time units, while the domain size is 8.89 units
along both the x- and z-axes. The wave has a phase speed in the direction of propagation of
0.707. In the frame of reference moving with the base wave, the principal instability has a phase
speed of 1.68 along the wave front (from upper left to lower right). Thus in a fixed frame of
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reference the instability has a phase speed of 1.69 in the z-direction and -0.69 in the z-direction.
The instability, which has been growing for some time, is first readily visible as an isolated patch
of statically unstable fluid (Figure 2c), although by this time significant steepening of the wave
in other regions, as well as curvature of the flow direction, is observable. Initially this statically
unstable region is somewhat two-dimensional, as the principal instabilities are two-dimensional.
In Figure 2d another patch of statically unstable fluid has emerged as well. By this time the flow
has become very three-dimensional (see below). The breakdown process is very complex, and
at the time of the last image (Figure 2f), little vestige of the Qriginal wave is apparent (about
18% of its energy still remains).

More understanding of this breakdown process can be obtained by examining the flow en-
ergetics. It is convenient here to split the velocity field into three parts: (i) the base wave; (ii)
the velocity in the vertical plane of the principal instability (in this case the z-z plane); and
(iii) the remainder (in this case the three-dimensional part of the flow). Figure 3 contains plots
of these three energy components as functions of time, along with various terms in the energy
balance for each component. One observes the importance of the three-dimensional component
of the instability, as it ultimately has more energy than that of the base wave. During the
time period shown in this figure, the base wave loses kinetic energy by shear interactions to
both the two- and three-dimensional components, and to potential energy through the buoy-
ancy flux. The three-dimensional component gains kinetic energy from the base wave by shear
interactions, and also from potential energy through the buoyancy flux, while losing energy to
the two-dimensional component through. shear interactions. The two-dimensional component
loses kinetic energy to potential energy through the buoyancy flux, while gaining energy from
the base wave and the three-dimensional component through shear interactions. From these
results it is seen that it is not possible to classify the breakdown process as either shear-driven
or convectively-driven. Both means of energy transfer are at work, removing energy from the
base wave, ultimately leading to both the dissipation of kinetic energy into heat and also the
mixing of the background density field.

A number of other aspects of this breakdown process have been examined. Of particular
interest is this mixing of the background density field, in which the energy of the internal wave is
converted into background potential energy. Defining the mixing efficiency to be the ratio of the
potential energy dissipation to the kinetic energy dissipation, it was found to be approximately
0.85, considerably larger that the typical value measured in the ocean of about 0.3 (Gregg,
1987), but consistent with other results from numerical simulations (Winters and D'Asaro,
1994). This difference in mixing efficiencies is probably affected most by the difference in the
Prandtl numbers, being 1 in the s.mulations compared to about 700 in the ocean. Furthermore,
this single wave breakdown event may be a more efficient means of mixing in comparison to the
far more random nature of the ocean,.

4 Conclusions

From the stability analysis and direct numerical simulations, a number of conclusions can be
drawn regarding the breakdown process for a propagating internal wave. For smaller-amplitude
waves, a portion of the instability can be associated with resonant interactions (Mied, 1976),
although other types of instabilities are present. For larger amplitude waves the resonance inter-
pretation is not of use; the instabilities can be rather broad-banded and three-dimensional, and
their specific character depends on the wave amplitude and propagation direction (in additional
to the Reynolds and Prandtl numbers).

The breakdown process itself is due to the inherent instability of the wave. As the wave prop-
agates, disturbances continually grow, drawing energy from the wave itself. As suggested by the
stability theory, these growing disturbances can be rather broad-banded and three-dimensional.
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As the perturbations reach finite amplitude, localized patches of hydrostatically unstable fluid
are formed, breaking down in a complex, three-dimensional mananer and leading to turbulence.

The final result is that much of the wave energy is lost through mixing of the ambient density
field as well as dissipation into heat, the ratio of these two effects being about 0.85. Thus the
breakdown process cannot be classified as simply shear-driven or convectively-driven, but is a
combination of the two. Moreover, overturning is not necessarily a cause of wave breakdown,
but more an indication of the growing instability. And finally, the wave does not break down
by one large-scale overturning, as with a "plunger-breaker" surface wave, but through several
localized regions.
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86-K-0690 and N00014-90-J-1112).
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Introduction:

We have performed a series of experiments on the dynamics of sedimenting surface-grav;ty-
currents. The physical situation concerns a current with a total density (pc) which is less
than that of (p.) the main body of fluid with which it interacts. In turn p. is made up
of interstitial fluid of density pi and particles with a volume concentration c and density
pp. Of additional importance is the density deficit ratio (R,) between the current and its
surroundings. We use = as a measure of the relative instability of the current and
it will be noted that it is equivalent to the similarly defined quantity, jAS/aAT, used in
the study of double-diffusive convection. Thus when R,, > I the interface between current
and ambient is very stable and it takes a large local particle conceutration to generate a
sufficiently large local density to penetrate the interface. On the other hand when R, -- 1
the whole layer can penetrate the interface and substantial mixing can occur. It is this latter
mixing process that is the key to a basic understanding of the dynamics of such currents
and we present new measurements of the magnitude of this effect. That this is the case
has become obvious during a number of experiments that explored the temporal evolution
of particle-laden currents released at one end of a long, deep tank. In what follows we will
present details of the experiments and the outline of a f eory that appears to explain, in a
general way, the results of those experiments.

Apparatus:

The main piece of equipment that evolved during the course of this investigation is shown
in figure 1. It consists of a rectangular tank 2 rn long and 0.65 m deep. In its original form
it was 8 cms wide but it became clear after a number of initial experiment that this tank
was too narrow. The results clearly showed the effects of viscous stiesses at the side walls.
Thus the tank was modified and its width increased to 16 cms. New experiments had a
behaviour that were consistent with a negligible level of lateral -viscous forces. The current
itself was generated in two ways. In the first a well mixed and fixed volume of particle-laden
fresh water was contained behind a barrier. At the start of the experiment the barrier was



I
removed and the gravity current allowed to evolve down the tank. In the second method a
large container of particle-water mixture was suspended above the tank. The mixture was
released at a constant flow-rate through 1 cm deep manifold spanning the width of the tank.
Again the evolution of the current was followed and recorded on video-tape for later analysis.

When it became obvious that mixing generated by the instability of the interface was of
crucial imporLtnce to our understanding of the dynamics of the current, the apparatus was
modified further as shown in figure lb. Here a partial barrier was placed approximately 65
cms from the upstream barrier. A gravity current was released but when it hit the second
barrier it was stopped and a uniform, almost-stationary layer of mixture was generated. This

then became unstable in a quasi-one-dimensional fashion. As discussed later, by taking fluid
samples and measuring their density it is possible to infer the total amount of mixing that
has taken place.

Results:

In what follows we will concentrate on details of the lock-exchange flow realizing that similar
results hold for the constant flow-rate case as well. The lock exchange flow is characterised
by a number of primary variables, pa, Pr the particle volume concentration (c)' and the

geometry (length and height) of the dammed volume. From these we extract or directly
measure the initial current density (pc)

lc (1 - c)

Pc Pp PI

and the density deficit ratio:

PC - P1

a) Gravity current evolution:

A sequence of photographs of a typical evolution is shown in figure 2. From photographs such
as this aad video recordings of the evolution of the gravity current it is possible to determine
the time dependence of front location. Typical examples, chosen from the approximately 40
experiments that were run, are shown in figure 3 for the case of a constant volume release and
in figure 4 for a release with almost constant flow rate. In both cases the critical power-law
behaviours are noted. In particular we note that for the constant volume (V) release the
flow starts out as a conventional gravity current with a more-or-less constant velocity and
apparently undergoes a transition to a buoyancy-inertia balance after approximatley 20 secs.
It then asymptotes a constant value of x rather than undergoing a transition to a viscous-
buoyancy balance as would have happened had this been a particle-free current. Similarly

'Of course the characteristics of particles are important. Of primary interest is the particle density pp.
However the size distribution is also critical. These can be combined also into the distribution of particle

fall velocity. In what follows we use, mainly, one grade of carborundum powder (the 1000 grade) with the

size distribution shown in figure Ic.
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for the case of constant inflow (Q) the current starts out in a conventional fashion with
x - t, but then undergoes a transition to a power law considerably less steep, at n = 2/3,
than that of a current under a viscous buoyancy balance (n = 4/5) These manifestations
of particle settling across the interface between current and ambient fluid can be explained,
partially, by invoking a particle induced stress at that interface (see the section on theory
which follows for specific details). This stress is due to the fact that the particles, as they
settle through the interface, drag with them fluid of density pl. This fluid mixes with the
lower layer fluid essentially to the bottom of the tank. Its major effect can be seen in the
last photograph (5) of figure 2 where we note that a gravity current made up of partic~es
and fluid of density intermediate between Pi and p. runs along the bottom of the tank.
As particles continue to settle out of this current the light fluid is released and rises, to
eventually form a continuous density distribution beneath the surface. This latter case has
been considered separately by Huppert, Kerr, Lister and Turner (JFM 226, pp. 349-369) and
Sparks, et al. (Earth and Planetary Sci. Lett. 114, 243-257) for example. Its major effect is
to generate a flow in the layer between the two gravity currents that opposes the motion
of the one of interest, i.e., the surfact current. Thus the interfacial stress is due to the
fact that particles and interstitial fluid (pz) carry their momentum with them as they pass
through the interface. If we assign a vertical velocity (v) to this transfer process then the
stress is given by pvU, where U is a measure of the horizontal velocity in the current. Thus
v becomes a crucial characteristic of the system. It can easily be seen that in the present
cases where c, the particle concentration is small (c s-• 0.01), the major effect concerns the
amount of interstitial fluid that is dragged across the interface and requires an independent
measurement.

b) Measurement of interface flux due to sedimentation:

A limited number of experiments on the mixing due to sedimentation were carried out in a
modified version of the tank (fig. lb), A barrier was placed 65 cms from the tank end and the
initial, constant-volume gravity-current allowed to contact it after a short time. Only a few
moments were necessary to generate a horizontally uniform layer of particles and interstitial
fluid. Sedimentation began and when the density at the interface exceeded the density of the
lower fluid convection commenced. The system was allowed to run until all the particle had
settled to the bottom. As before, a gravity current of particles and mixed fluid moved along
the bottom of the tank and into the right hand compartment where the mixed fluid was
released away from the original layer. Samples were taken from various depths of this layer
using a specially designed nozzle that reduced contamination from fluid at other levels. The
sample densities were mcasured to 5 decimal places using a specific gravity bottle. A typical
result is shown in figure 5. From these data the density deficit could be found and compared
to the initial deficit. The difference divided by the initial density difference (p. - pl) is a
measure of the depth (S) of interstitial fluid lost to the lower fluid.

i.e. S=____

A number of experiments with different values of R, and initial fluid depths were carried out.

3



4

The results are summarised on figure 6 for the limited number of experiments performed.
As expected the loss of interstitial fluid is greater as R, -*- 1 and clearly there is an optimum
value of the fluid depth between h = 3.4 and 6.7 cms. Unfortunately such measurements
only give the overall mixing due to sedimentation and not the mixing rate. We have plans
to extend the measurements to not only measure the final state but intermediate states as
well. In this way we hope to be able to estimate the necessary fluxes.

Theory:

The similarity solutions of Huppert (JFM 121, 43-58) and Maxworthy (JFM 128, 283-322)
can easily be extended to the present case. For an intrusion the volume of which varies with
time as:

Lh- t

Where L is the intrusion length and h its height. Then a balance between buoyancy and the
interfacial stress pUv results in a spreading law:

L ~L2)J

if there is no velocity in the outer flow. Here g' g(p, - Pc)/P.. On the other hand if
external forces (e.g., those due to the bottom boundary current) generate a flow (U,) to
oppose the surface current then:

L glq2 \ 1/3 to/

We note that for the case of a constant volume release, i.e., a = 0, L tends to a constant
value as has been found in the present experiments (figure 3). For a constant inflow, i.e.,
S= 1, the similarity solution gives L - t 2/3 . While such a result has been found in some
cases, e.g., figure 4, often the slope is less steep than this suggesting that any of the quantities
g' 4 or Uo may perhaps have a power law behaviour in time as well due to the unsteady
nature of the flow. There is, also, considerable merit to the idea of genera. ing a more detaiied
computer model, but this reserved for the extended project.
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The internal slab-collapse problem

J. Baihler' S.J.Wright! T.Dreier'

Abstract

A simple surface wave develops, for examzple, after a dam break in a reservoir.
The wave lengthens as its upper edge travels into the reservoir, and the surface
slopes gradually decrease. Steep slopes are maintained, however, in a region near
the leading edge of the wave. This region is called a bore when the contents of
the reservoir spill into a preexisting tailwater downstream of the dam, and a front
when they spill onto a dry bed. The focus of the present contribution is on the
corresponding two-layer flow, i.e. on the collapse of a fluid slab in another fluid of
only slightly different density and of finite depth. Use is made of the fact that the
interface along a simple internal wave advances with the local long wave speed, and
of flow continuity. A general analytical solution for the shape of simple waves in
inviscid Boussinesq flows is presented. Also, limits are outlined at which the inter-
face of a simple wave becomes unstable. Experiments on the collapse of a slender
slab of fresh water along the surface of a body of salt water were carried out, anid
th3 results for the shape of the collapse region are compared with the predictions.

Introduction
Simple waves and bores occur on the interface between warm surface water and cold
bottom water in stratified reservoirs when the inflow rate suddenly increases or decreases
(Fig. 1). Reasons for such a change of the inflow rate include emergency releases from
an upstream reservoir or sudden floods, and the resulting interface level changes may
affect the water quality at submerged intakes located along the reservoir.

While an increase of the inflow rate produces a bore which travels along the free
surface of the reservoir, the corresponding internal wave may either steepen to form
a bore as well, or it may gradually lengthen in time and propagate as a simple wave.
Cl.,ple waves arc also ca1'ed rarefactions or ngativ wave, whereas bores are noving

hydraulic jumps associated with energy dissipation.
Numerical solutions for the shape of simple internal waves in flows with small density

differences (Boussinesq flows) were presented by .Rottman and Simpson (1983) in their
analysis of the lateral collapse of a slab of salt water beneath a body of fresh water,
and by Kranenburg (1993) for intrusions of one fluid into another. A similar analysis
is the one by Keller and Chyou (1991) for lock - exchange flows in ducts. Rottman

"Institute of Hydromechanics and Water Resources Management, ETH Hinggerberg, CH-8093, Zurich,
Switzerland

t Dept. of Civil Engrg., The University of Michigan, Ann Arbor, MI. 48109
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and Simpson (1983) also showed that an the interface becomes unstable when the slab
thickness exceeds one-half of the water depth, and that this instability leads to the forn- I
mation of a bore. Among the more recent concepts for the description of bores are those
offered by Denton (1990), and by Keller and Chyou (1991). Other types of instabilities
occur when the velocity difference between the two layers exceeds a limit depending
on the flow depth (Long, 1956 ) or on the thickness of the more slender layer (Ellison
and Turner, 1959). In this study an analytical solution for the shape of simple internal
waves is derived. Experiments on the collapse of a slender slab of fresh water along the
euerface of a body of saltwater are described, and the shapes measured shapes of the
resulting simple internal waves are compared with predictions. The slabs extended over
less than one-half of the water depth, in which case no bores develop.

Critical flow and simple waves
The present analysis is carried out for two-layer flows in a duct, as shown in Fig. 2,
and the positive direction is towards the right. Ducted flows often involve considerable
temperature and density differences, and the density terms will be retained in most of
the results. In the Boussinesq limit the results will also be valid for flows with a free
surface. Properties of the flow in the upper layer will be denoted by the index i = 1,
and those in the lower layer by i = 2. Provided that the intexfacial shear and the
entrainment of fluid from one layer into the other can be neglected, the flow in each
layer is then desacibed by the fluid density pi, as well as by the values of the layer
thickness hi and the velocity ui at a given distance x along the duct and at time t. The
corresponding discharge rate is qi = hjui. The throughflow rate q = q1 + Q2 and the flow
depth h = h, + h2 are taken to be invariant along the duct and in time. The effective
gravitational acceleration acting on the fluid is g' = (1 - r)g, where r = p,/p2.

It is convenient to examine gradually varying flows by using the fact that small
disturbances on an interface travel at the phase speed A of long interfacial waves of
limiting amplitude. The flow in the frame of reference of such a disturbance is called
critical, and the composite Proude number G2 of the flow is equal to one. According to
Arnii (1986) and other authors the corresponding relation for a ducted flow is

ru,*I2 U12"2=G
-' + - = (1)

g'hi g'h

The asterisk is used to denote quantities in the moving frame of reference, in particular,
u = uj - A. In the special case that the density of the upper fluid can be neglected
(r -* 0, g' --+ g) the first term of the above equation vanishes, and the composite Froude
number becomes equal to the square of the conventional Froude number for open channel
flows. By solving the remaining statement for the phase speed of a disturbance on the
free surface one obtains the familiar relation

X = U2 (2)

where the upper sign applies to the leading wave field travelling at a speed A+ in the
positive direction, and the negative sign to the trailing field moving at a lesser speed
A-. A slightly different procedure can be used to solve the general form of (1) for the
wave speeds. By noting that the throughfow velocity q/h is constant along the duct,

2
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one may introduce A - q/h as a scale for the wave speed. Similarly, one may make use
of the velocity difference u = U2 - uI which is independent of the frame of reference
(u = u2 - u,). In dimensionless form, the resulting expression for the wave speeds is
then

_ U[(1 - ý)2 - re2] -a - rU2)(
A - Q -v ( - )( - r U )( )1

Here, • = h2/h, U = u/(g"h)1/ 2, A = A/(g'h)1 /2 , Q = q/(g'hS)1/2, and a = 1 - e(1 - r).
This result for ducted two-layer flows with small or large density differences was derived
independently by Keller and Chyou (1991) and by Bfihler et al. (1992).

For the further analysis of unsteady flows it is useful to consider a (moving) charac-
teristic point defined by the intersection of the interface with a line at height h2 above
the floor, as the one marked by a filled circle in Fig. 2. An important feature of simple
waves is that this point moves along the duct at the long wave speed A, and that the
flow thr-ough a cross-section moving with it remains time invariant. As a consequence,
the velocity A of the characteristic point is also a function of h2 only, and not of time. In
order to determine the variation of the velocity difference u between the two layers along
a simple wave one may examine thc change of the flow-rate in the upper layer through
adjacent characteristic cross sections. The flowrate in this layer through a characteris-
tic cross-section moving at a velocity A is q2" = (u, - A)hl. This flowrate exeeds that
through an adjacent characteristic cross- section, which moves at a speed A + dA, by an
increment which is equal to the rate hldA at which light fluid is stored between the two
cross-sections, and hence

S- A)h1] dA
dh2 h h(4

where both sides have been divided by the change dh2 in the interface level from the
first to the second cross-section. Similarly, one obtains

d[(u2 - A)h21 dA•
dh2  _ dA (5)

for the lower layer.
The classical solution for the dam-break problem (r = 0) can be retrieved from (5)

by eliminating u' by means of (2), and by integrating the resulting expression. This

leads to

\o- =0 ±3g3l/2(h'/ 2 - h/ 2) (6)

and a parabolic shape of the free stu-face. Here, h2o is the initial thickness of the slab.
When the slab collapses towards the right and is initially at rest, u2 is positive and
AO = -(gh 2o)1/ 2 is the wave speed on its upper surface.

Returning to two-layer flows, the variation of the velocity difference u = U2 UI
along a simple wave can be derived from (4) and (5) as

du Ah - q + u(h 2 - hi) (7)
dh 2  hi h2

By nondimensionalizing this expression and using (3) one obtains

dUv (U + 7( -.r)) (8)
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Rottman and Simpson (1983), Kranenburg (1993), as well as Keller and Chyou (1991)
derived their relations for the change of the flow along simple interfacial waves from
the inviscid shallow water equations. Keller and Chyou's relations are for ducted non-
Boussinesq flows and can be shown equivalent to (8). There are a number of substitu-
tions that convert (8) into standard forms of the Abelian differential equation of the first
kind, but no general analytical solution was found. For the special case of Boussinesq
flows, i.e. when r and a both approach a value of one, the variables can be separated.
By substituting U =sin(#) and C = [1 + sin(O)]/2, (8) can then be written as

dO = ±dO (9)

where the upper sign still applies for the leading wave system and the negative sign to
the trailing system. After integrating from starting points 40 and 00, we obtain in terms
of the original variables

U = sin{arcsin(Uo) ± [arcsin(2C - 1) - arcsin(2eo - 1)]} (10)

where the sign convention is the same as for (9). Fig. 3 represents two solutions
generated from (10) for simple waves which are due to the collapse of dlender slabs of
fluid along the surface of a body of somewhat denser fluid (solid curves). To facilitate
the physical interpretation of the curves the vertical axis is the one representing the
interface level, i.e the independent variable. The direction of the collapse is towards
the left and associated with the leading wave, such that the velocity difference u across
the interface is positive and the positive sign in (10) applies. Curves axe drawn for
two slabs of different thickness 1 - Co. The slab interfaces are initially at Co = .5 and
ý0 = .75, and all fluid is initially at rest (Uo = 0). These initial concdtions axe marked
by solid circles in Fig. 3. For the thicker one of the two slabs (10) degenerates, and
the corresponding curve is a straight line. The speed A at which a characreristic point
moves along the duct can now be obtained by setting r -+ 1 in (3) and by combining
the result with (10), or by evaluating the corresponding expressions in q and 0. Rlesults
for zero throughflow (Q = 0) are shown in Fig. 4. Again, the same two starting paints
ý0 with U0 = 0 are chosen as in Fig. 3, and marked by filled circles. The curves for A+
starting at these points also reflect the shape of the simple wave since the distance x
which a characteristic point has travelled along the duct in a time t after release is A.,
and thus proportional to the interface velocity A at any height t. To emphasize the fact
that the left end of the slabs collapses, a small part of the remaining horiontal slab
surface is shown just to the right of the starting point. It should be mentioned here that
the shape of the interface near the point where it meets the free surface is not realistic.
The reason is that te shallow water equatioas do, not acc.,it for a t-,.-gation point
which is present at the tip of the collapsing region. This stagnation point produces
a blunt front, which was considered by Kranenburg (1993) and other investigators of
simple waves (see also Fig. 5).

Finally, the interface curves for slender dense slabs collapsing to the along the bot-
tom, as the one shown in Fig. 2, are symmetrical to those shown here about the
horizontal axis at C = 0.5.
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Instabilities
Rottman and Simpson (1985) noted that for slabs thicker than one-hall the water depth
the maximum of the interface speed does not occur at one of the end points of the
correponding simple wave, but somewhere along it. This leads to the formation of a
boYe, a re-gion of rapidly varying flow which is associated with energy dissipation. Stable
simple waves are tiuys only possible over pazts of these curves which do not include aminimum. The value of U at the maxima of the interface curves, for ducted flows was

derived by l3fihler (1994), and for Boussinesq flows it is

U = +:(24 - 1) (11)

where t'h negative sign apples for the leading wave field. The corresponding relation
does not intersect with the two curves in Fig. 3, so that no bores are expexted on
the interface, and the only point which is included in (11) is the lower one of the filled
circles in Fig. 3. Long (1956) showed that a second type of instability arises when
the long wave speeds become imaginary, i.e. when the ex.-pression in the root of (3)
becomes negative. For Boussinesq flows this occurs when U > 1. Fig. 3 shows that
this instability is not relevant for the flows under consideration. Interfacial instability
is also possible at shorter wavelengtus and entails local mixing of the two fluids near
the interface. Ellison and Turner (1959) suggested that mixing is largely absent when
the bulk Richardson number of a gravity current is less than about 0.8. For the case
conkde-rd here this means that no mixing is expected when

U2 < 1.25(1 -4) (12)

This limit is also shown in Figs. 3 and, by making use of (3), in Fig. 4.

Experiments
The solutions (3) and (10) wie based on the inviscid shallow water equations, and it
is of interest how much the interface is changed by mixing and other real fluid effects.
To provide a basis for such comparisons, two experiments were carried out for slender
slabs extending over less than one half the water depth. The fluid was contained in a
glass-walled tank 3m long, 0.25m wide, and 0.55m deep. A removable vertical gate was
installid, at 1.76rn from the right end of the tank. A gap was left between the lower
end of the gate and the bottom of the tank. To run an experiment the tank was filled
with slightly salty water to a depth of 0.336m. For the first experiment the density of
the salt water was p2 = 1306.1kg/M 3 , for the second one 1005.1kg/mr. Fresh water
(p, = 999.75kg/rn3 ) containing some dye was carefully and slowly released onto the
water surface on te r t side of t gLe totatl .Water depth Was 0.4&n. ..
the absence of mixing this procedure would have led to a sharp interface at Co = 0.54.
Finally, some detergent was released on the surface to the right of the gate to reduce
the surface tension and the height of the frontal region of the collapsing slab. The gate
was then removed to start the flow. Still pictures of the advancing wave were taken at
intervals of 1.5a until the front was reflected at the wall, and started interfering with
the flow in the region of intcrest. Fig. 5 is a picture of the flow in experiment 2, and
at t•= 17.5s after thc release. It was taken against a semitransparent paper illuminated
from behind, and shows the remaining part of the initial slab interface on the right at
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a level of Co = 0.52. The simple wave starts further to the left, and ends in a front.
The initial location of the retaining gate at x = 0 is marked by a vertical arrow. The
results for both experiments, and at 20.5s after the release are shown in Fig. 4. One
rather striking result is the hump just to the left of Elison and Turner's limit (12). The
hump is also visible in Fig. 5, and appear to be a remnant of large structures near
the lower fringes of the frontal region, which is gradually left behind and grows in size.
An influence of standing surface waves on the evolution of the hump is unlikely as the
time scales of the two motions are quite different. Another noteworthy feature of the
results is the slope of the interface near the point 0.5, 0, 5. At this point a maximum
of the interface speed is reached according to (11), and the interface slope should be
infinite, while the experimental data suggest a moderate slope. This discrepancy reflects
the weakness of the shallow water concept in locations where the flow is, or should be,
rapidly varying.

Conclusions
An analytical solution for the shape of simple waves in two-layer flows L presented. So-
lutions for the shape of these waves are based on the inviscid shallow water equations,
and experiments were carried out to determine errors caused by the underlying simpli-
fying assumptions. The results for the collapse of a slender slab of frsh water along
the surface of a body of salt water (Fig. 5) agee easonably well with predictions (Fig.
4), except that the real interface does not show abrupt chaages in slope, and that a
growing disturbance was observed in a region where interfacia mixing can be expected.

References
Armi, L., 1986 The hydraulics of two flowing layers with different densities. J. Fluid
Mech., Vol. 163, pp. 27 - 58.
Biililer, J., Wright, S.J., Kim, Y., 1992 Source control of intrusions along horizontal
boundary. Jour. Ilyd. Eng. Vol. 118, No. 3, pp.442 - 459.
Bilihler, J. 1994 Simple internal waves and bores. Jour. Hyd Eng., Vol. 120, No. 5.
Denton, R. A. 1990. Accounting for density front energy losses. Jour. Hyd. Eng., Vol.
116, No.2, 270-275.
Ellison, T.H., Turner, J.S. 1959 Turbulent entrainment in stratified flows. J. Fluid
Mech. Vol. 6, 423 - 448.
Keller, J.J., Chyou, Y.-P. 1991 On the hydraulic lock - exchange problem. Zeitscdrift f.
angew. Math. und Physik, (ZAMP). Vol. 42, No. 6, pp. 874-910.
Kranenbu-g, C. 1993 Unsteady gravity cirrents advancing along a horizontal surface.
Jour. Hyd. Research, Vol. 31, No. 1, pp. 49 - 60.
Long, R.R. 1956 Long waves in a two fluid system. Jour. Metercology, Vol. 13, 70 - 74.
Rottman, J.W., Simpson, J.E., 1983 Gravity currenta produced by instantaneous re-
leases of a heavy fluid in a rectangular channel. J. Fluid Mech. Vol. 135, pp. 95 - 110.

6



zA

V

Fig. I Simple internal wave due to a sudden inflow into a reservoir

p1  hi '-U 1

p2  h2 :--U 2

F ig. 2 Unsteady two - layer flow in a duct

-C
N

0
0.0 0.5 1.0

U=u / (g h l/2

Fig. 3 Velocity difference u across the interface of two slender fluid slabs collapsing
along a free water surface. Filled circles represent the initial conditions.

7



0
0

(12): o

'<(3). Uo=O

(10)

to 0
r'4

O Iq

N~ O h

o Exp. 1

*Exp. 2 I

I 0A

0

-1.0 -0.5 0.0 0.5 1.0
A I •/ ('h)l /2

Fig. 4 Velocity A of the interface, reflecting the shape of the collapse region

Fig. 5 Collapse of a slender slab of freshwater in a body of saltwater. The arrow marks

the position of the retaining wall before its removal.

III



L4

EXPERIMENTS ON 3-D TURBULENT DENSITY CURRENTS

G.C. Christodoulou and F.E. Tzachou
Department of Civil Engineering

National Technical University of Athens, Greece

Experimental results from an on-going research program on 3-0 density currents are
presented. The experiments were conducted In a large laboratory basin so as to
achieve rather large Reynolds numbers and avoid interference with side or end walls.
Results from visual observations obtained via photographic records for four different
bottom slopes between 50 and 150 are presented In non-dimensional form and
discussed in comparison to earlier investigations. It is found that In most cases the
current attains a nearly constant width, with minimal further growth, This width is
proportional to a length scale expressed in terms of the initial buoyancy flux and
density difference, with no influence of the initial width, the coefficient of
proportionality being dependent on the bottom slope.

1. InkouctioQ

The behaviour of 3-D steady density currents on a sloping bottom has been little
studied so far, despite considerable work on 2-D currents. In a recent review, Alavian
et al [2] state that 3-D currents attain an equilibrium condition given by linear increase
of depth and lateral width, and a constant normal Richardson number. Yet,
experimental evidence from available previous studies yields widely different estimates
of the rate of spread of such currents, ranging from nearly 00 to nearly 900.

Fietz and Wood [51 were the first to conduct an experimental study of 3-0 currents:
they used a small tank 1.2x0.9 rn and placed the dense inflow near the wall, therefore
they recorded the development of half of the current field. They observed that
turbulent currents spread almost linearly, at angles ranging between 300 and 840,
depending on the initial Richardson number, and always considerably larger than
respective laminar currents. Reliance on these conclusions, however, is doubtful due
to the severe wall effects. Hauenstain and Oracos [6] investigated the phenomenon of
plunging 3-D currents in a large basin "10x6 m and proposed an Integral model based
on the concept of a radial source of buoyancy. They found out that the assumption of
linear growth of the current's lateral boundaries was not satisfactory. Alavian [1]
presented limited experimental results obtained in a 2 m long tank and suggested that
3-D currents tend to attain a normal state with a constant Richardson number, where
the depth and widih of the current rei--n nea-ly constant, th-•er subsquent growth
depending only on the (small) entrainment rate. Tsihdntzis [7] presented more
extensive results obtained in the same experimental facility leading to the same
conclusion; he also distinguished three flow regimes, i.e. laminar, transitional and
turbulent. According to his results the generation of turbulent currents requires at the
inlet Reynolds numbers in excess of about 1000. The evolution of 3-D currents was
also studied numerically by Tshiintzls [7] and Tslhrlntzis and Alavian [8].
Christodoulou [31 attempted to generalize In not-dimensional form Alavian's [1] results
concerning the normal width.

The objective of the present study Is a systematic examination of the basic
characteristics of 3-0 currents by means of extensive experiments In a large
experimental basin, so that (i) Reynolds numbers are sufficiently high for turbuleni flow
to occur in most cases and (ii) Interference with side or end walls is avoided. The



experimental study is supplemented by theoretical model development, extending
previous investigations. In this paper, results concerning plume growth as obtained
through photographic records are presented and discussed.

2. The Experiments

The experiments were conducted in the Applied Hydraulics Laboratory of tie NTU of
Athens, in a large basin 7 m long, 5 m wide and 0.7 m deep. One of its sidewalls was
made of plexiglass, allowing a side view of the flowing current. The dense fluid was
supplied through a small channel and released at the top edge of a metal slab which
was positioned inside the basin at the desired slope. The slab consisted of corrugated
steel sheets which were placed together and properly supported on aluminum legs so
as to form flat rigid surfaces 4 mn wide and 2 m long. By adjusting the height of the
supporting legs, the slope of the slab could be varied. For small slopes a second 2 m
long slab was added, so that the total length was 4 m. Before placement the slabs
were painted white and had a 1x10A cm grid drawn on them, to facilitate visual
observation.

The dense fluid consisted of a saltwater solution which was well mixed to the desired
density, measured at the beginning and end of each experiment to an accurancy of ±
0.001 gr/cm3 . The sakwater solution was supplied to the inflow channel from a nearly
constant head tank through a plastic pipe equipped with vanes for controlling the flow
and with a specially designed odfice meter, connected to a precalibrated carbon
tetrachloride differential manometer for flow measurement. Before each run, the basin
was s•owly filled with tap water, and allowed to rest for more than one hour to avoid
residual ambient circulation. Then the dense fluid was introduced from the inflow
channel ontc the bottom slab. Preliminary runs indicated that I to 3 minutes were
required for the dense front to travel the entire slab length depending on the bottom
slope, slab length and Initial discharge; therefore, colour was injected after the
respective time, so that the behaviour of the desired steady part of the current was
observed. I he colour was supplied through a separate reservoir and a series of
photographs were being taken from a moving platform suitably located at 6 m above
ground level. The colour consisted of a kalium permanganate solution and its flowrate
was taken into account in the value of initial discharge, being of the order of 5% of the
dense inflow.

Figure 1 shows schematically the experimental setup. Excluding preliminary runs, a
total of 63 experiments were carried out in four series, corresponding to different
bottom slopes, i.e. 150, 100, 7.50 and 50; further experiments on a 20 slope are
presently underway. Table I presents a summary of the experiments, indicating the
range of parameters examined. For comparison, available similar data from previous
studies are also shown.

3. Results and Discussion

Figures 2 and 3 show samples of the photographs taken, which Illustrate consecutive
stages of the coloured dense plumes. Analysis of the photographic records allows
quantitative estimates of the longitudinal velocity on the axis u(x), and the width of the
current, b(x). The thickness of the current, h(x), was observed only qualitatively by
side view of the coloured plume in selected runs. In general it was seen that the
current upon entrance to the basin undergoes a rapid lateral spreading and at the
same time a severe reduction of height, in a way resembling the plunging
phenomenon. Further downstream, the current height changes only slightly, whereas
the width continues to increase significantly, but at an ever decreasing rate. In the
experimantal series carried out on the 2 m long slab it was often not clear whether a
"normal" width has been reached by the end of the slab, i.e. a width with slight
(approaching zero) linear further growth. In the experiments carried out on the 4 m
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long slab it was evident that such a normal width condition was indeed reached at a
distance usL'vily 2.0 to 2.5 m from the origin: specifically, the increase of width db/dx
beyond this distance was estimated at 0.1 or less.

Previous research [1,7] suggests that the increase of width at the normal stage of the

3-D current should be related to the entrainment rate, as follows:

db/dx = 3E (1)

where E depends on the normal Richardson number Rin. To an order-of-magnitude
approximation, the value of Rin may be obtained as [1,2]:

Rin = CdI(Ci tanG) (2)

where cd is the bottom friction factor, ci is a shape factor and 8 is the bottom slope. In
the present experiments on a smooth bottom, a value of cd of the order of 0.01 was
found appropriate. Therefore, using ci = 0.75 [1], and for 8 = 50 to 150, the range of
Rin is, approximatuiy, Rin = 0.15 to 0.05. According to Christodoulou [4], the
entrainment rate for Rin<l may be estimated by

E = 0.007 Rin-112  (3)

Therefore, for Rin between 0.15 and 0.05, the respective range of E is E = 0.018 to
0.031. Consequently, based on eq.(1), the predicted rate of increase of the width is at
most 0.1, i.e. of the same order as experimentally found, taking into account the
accuracy of the method used. While the detailed analysis of the records is still in
progress, the width of the plume at the beginning of small linear increase as discussed
above was considered as the "normal" width bn. It was attempted to correlate this
normal width to the initial width of inflow, bo, or to other flow variables. By comparing
results with bo = 5.0 cm and bo = 2.8 cm it became clear that bn does not depend on
the initial width; instead, bn correlates very well with the buoyancy flux and the initial
density difference. Through dimensional considerations, the following expression was
established:

bn / (B2 /g'3 )1/5 = K (4)

where g' = gApo/p is the effective intensity of gravity based on the density difference
of inflow (Apo), and B = g'Q is thM buoyancy flux.

Figure 4 shows the correlation of experimental data with eq.(4). Despite the
experimental scatter, it may be seen that eq.(4) represents well all experiments, with
a different value of the constant K for each bottom slope. The value of K, determined
by least-squares analysis, is found to increase with decreasing bottom slope, as
follows:

0 = 15 K = 33.5 (5.1)
0 = 100 K = 36.4 (5.2)
0 = 7.50 K = 39.8 (5.3)
6 = 50 K = 45.0 (5.4)

It is to be noted that even experiments with relatively small Reynolds numbers, which
may conceivably belong to the transitional or even laminar regine, are also well
described by the above general expression, within the observed experimental scatter.
Besides, ;n Fig 4 the experimental data of Alavian [1] are included, which clearly
represent laminar currents. Those data are also in fair agreement with the proposed
expression.



It may therefore be concluded that the width bn at the beginning of the normal state of
a 3-D current on a smooth surface depends uniquely on the length scale (B2Ig'3 )1/5
and the bottom slope; the initial width, bo, has no influence as long as it remains small,i.e. bo<(B2/g'3)1/5.

4. Conclusions

Results are presented from an experimental investigation of mostly turbulent 3-D
density currents, carried out in a large laboratory basin. Analysis of photographic
records tends to support earlier evidence about the attainment of a normal state, in
which the current dimensions grow only marginally. The current width at the beginning
of the normal state is found to depend mainly on a length scale consisting of the
buoyancy flux and the effective gravity, as given by eq. (4). The constant K depends
on the bottom slope but not on other experimental variables in the ranges studied.
Further work on the behaviour of 3-D currents is in progress.
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Table I: Ran3M of basic warameters

No Apolp QB Rao Ri
Study of runs (0/6o) (cm 3 /s) (cm4/s 3)

Present 63 5-32 25-200 245-6121 500-7143 0.(14-1.05

Alavlan [1] 3 4 2.4-14.9 9.4-58.5 55-390 0.15-5.9

Tsihrlntzls [7] 75 2.1-14.7 3.5-33.2 12-140 38-5533 104-8.5

Fletz&Wood [5] 22 10-85 4.8-39 50-3194 1800.14900(*) 2.6.10-4
.10.7.10-4(*)

Hiau+Dracos [6] - 1-25 240-3850 280-46.10 4

(*) Based oii the hydraull radius
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MIXING AT THE FRONT OF GRAVITY CURRENTS

Marcelo H. Garcfa and Jeffrey D. Parsons
Departmnent of Civil Engineering

University of Illinois at Urbana-Champaign
Urbana, Illinois 61801, USA

INTRODUCTION

Mixing at the front of a gravity current such as a saline flow or a turbidity current
depends on two main processes. They consist of (a) Kelvin-Helmholtz billows which roll up in
the region of velocity shear above the front of the dense current, and (b) a complex shifting
pattern of lobes and clefts which form near the bottom at the lower part of the leading edge
(Simpson, 1987). It has been suggested that mixing at the front of turbidity currents plays an
important role on the dynamics of such flows, regulating their capacity to transport sediment for
long distances as well as the characteristics of the sedimentary structures that they generate
along their path (Allen, 1971). However, our present ability to quantify the impact of frontal
mixing on the dynamics of dense bottom currents is quite limited. Probably the main reason for
the limited amount of data obtained through laboratory experiments and field work is the
unsteady nature of the phenomenon under consideration. The fact that a current front is
continuously moving as the flow evolves with distance, renders the measuring of its internal
structure a very difficult task, both in the laboratory (Altinakar et al., 1990) and in nature (Hay
et al, 1982). If the issue of unsteadiness could be resolved, the potential for obtaining
quantitative data and detailed observations on fluid-scdiment dynamics would be vastly
increased. This has motivated the experiments reported herein, which are part of a long-temi
program to study the dynamics of gravity currents in continental shelves and slopes.

EXPERIMENTAL APPARATUS

An experimental tank specially designed to freeze the motion of unsteady gravity current
fronts was constructed for the experiments, The tank is similar to but larger than the one used
by Simpson and Britter (1979). A schematic of the facility is shown in Figure 1. The
apparatus includes: a channel fabricated with clear Plexiglass having a moving conveyor-floor
portion and a fixed-bed portion, a headbox with flow conditioners, a tailbox reservoir with an
adjustable weir, a sediment-water mixing reservoir with a constant-head tank, two pumps,
valves and piping with flow meters, and a supporting structure. The working channel is 300
cm long, 30 cm wide, and 50 cm deep. The upstream end of the channel has a 150 cm long
"moving bed" conveyoor.. The belt .- Ve can be vried from virtually no motion up t. 20
cm per second. Downstream of the conveyor belt, a 75 cm long portion of the 150 cm long
fixed-bed region of the channel has a false floor that allows for placement of a sediment bed to
enable erosion studies. A sliding slot valve is installed at the downstream end of the flume to
regulate the flow of dense fltid. A 2500 liter working capacity reservoir is used to prepare the
dense fluid by mixing salt or sediment with water. A pump conveys the dense fluid to a 500
liter constant head tank from were it is delivered at a controlled rate to the slot valve. A broad
crest weir mounted just behind the slot valve, regulates the water depth along the working
channel anywhere from 10 cm up to 48 cm. The water that flows over the weir goes into a tank
with a 2000 liter capacity from were it is pumped back to the upstream end of the channel. The
flow rates of dense fluid and fresh water are monitored with the help of Venturi flow meters.
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Figure 1. Schematic of experimental apparatus (not to scale)

EXPERIMENTAL TECHNIQUE

In this set of experiments only conservative saline currents have been studied. Their
behavior can be expected to be quite similar to that of turbidity currents laded with very fine
sediment (Garcia, 1993). The experiments were started by setting the conveyor belt to a desired
speed and by adjusting the discharge of fresh water over the weir and the weir height so as to
produce a mean flow velocity in the channel equal in direction and magnitude to that of the belt
(i.e. slip velocity condition). Dense water, previously prepared in the mixing tank by adding
salt, was then introduced through the slot valve at a measured rate, thus creating a density
current. The discharge of dense fluid was varied until reaching a steady state in which the
current front was arrested just in front of the end of the conveyor belt but still on the fixed-bed
portion of the channel. At this point the front characteristics were measured. Such equilibrium
configuration inhibited the formation of lobes and clefts near the bottom at the lower part af the
leading edge and isolated the effect of the Kelvin-lielmholtz billows at the upper edge of the
density current front.

U Weir
Height

hf/ h4 ho

Belt gq

Figure 2. Definition diagram
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EXPERIMENTAL RESULTS

Main results of the experiments conducted are presented in Tables la and lb. Other data
(e.g. aspect ratios) can be calculated from the data given in the tables, but were not included for
the sake of brevity.

Exp. Reduced Gravity Wir Height Body Height Front Velocity ' Flow Deth
Number g' (cnvs^2) (cm) h4 (cm) UI (cm/s) hl (cm)

111.77 "40.... .0 90 89

11.77 30 3 38.05
........ . 6 3-3 0 .. . . 13 9 -.37

4 37 30 3.5
5 19.62 ' 30 " 2 01 .2'39.T6
6 15.70 " 38 258 8'46.84

9.91 38 3.5. 46.978 7.85 38 4.5 8.59 "---4".7'TI
9 9.43 23 9.50 29.20

""•28.45 - 122 . 10.w4 2-f9.75-

"14 26.49 22 2.4 i 39 36.7
- " " 2 • " 2 5 .5 1 .. . 2 4 .5 " • 2 .3 3 " 3 0 .9 1

B3 --. 43 22 3.4 -11.72 756M33
14 29.43 2.... 3.6 17.52 - 30.5

Table La. Experimental initial conditions and results

Front Height Buoyancy FI ReynodsNarbr Richardson Nmaber -Fude Number
hf (cm) g'q (cmA3/sA3) U lhf/v g'qs/U 1A3 U l/(g'h4)Al/2

15. 20.3 11951 0.131 1._1
12.0 93.4 90.2 15 1.18
8.'5 137.'1 ... 657 0.1615 - 1.29 '

13.0 225.2. .. I•01 0.233 1.43
6.0 115.1 5093.. .108 1.63
T.0 92.1 6737 0.132 1.42

1 14.0 1 96.8 96'83 0.1699!4

.163.8 1288 0.258 1.45
7.5 "11.0 6479 0.142 1.01

" 152. 7593 0.134 1.24
7.5 155.4 7765 0.105 1.61
1•.0 562.9 14572 0.300 1.09

11.M'3.6 105 0.205' 1.11)
12.5 172.•8 13657 ... U.196... 1122

Table lb. Additional experimental results

d - - - ______ - -- - ---- - -- ---- --- - - -
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ANALYSIS

Consider the situation described in Figure 2. The independent variables are the flow
velocity in the channel (Ul), the total flow depth (hl), the reduced gravity (g') due to excess
fractional density, and the discharge per unit width of dense fluid (q). The dependent variables
of interest are the density current velocity (Uf) and the depth of the body (h4). Following
Britter and Simpson (1978), dimensional anaiysis can be used to obtain the relation:

Uf h4 A -U, (1)
JT 7 1 ,U.3 g'hl)

For given U1 and hl, the buoyancy discharge g'q can be adjusted, as it was done in the
experiments, until the velocity of the front (Uf) is equal to zero. This yields:

From (1) and (2) it follows that(

u12  (h43

and

For the purpose of comparison with the observations of both Britter and Simpson (1978) and
Simpson and Britter (1979), (3) is modified to

gUP 4 _ (h4')

where 05=vO3(h1/h4), without any loss of generality. Figure 3 shows a plot of observations
corresponding to the relationship implied by (5). The data fall between the limits set by the
observations of Britter and Simpson (1978) and Simpson and Britter (1979) which correspond
to slip and no-slip velocity conditions; respectively. This suggests that the formation of lobes
and clefts may not have been totally inhibited during the present experiments as corroborated by
cas'"-- ob-ervaton.

The most important parameter for the present study is the dimensionless mixing rate;
g'q/UlA3. A plot of the observed values of mixing rates is shown in Figure 4. For the sake of
comparison, the data of Britter and Simpson (1978) obtained under similar conditions are also
included in the graph.
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Figure 4. Dimensionless mixing rates



The data range is restricted by the amount of saline flow that can be measured accurately in the
experimental facility at low mixing rates, and by a critical condition at the upper end. Such an
upper limit is interesting because the data in this study, Britter and Simpson (1978) and
Simpson and Britter (1979) suggest a critical dimensionless entrainment rate of about 0.3.
Above this level it was found that all fronts could not exist as such and became ,tustable, mixing
up completely with the clear water.

The observed dimensionless mixing rates display a pattern that seems to be ifluenc=d by the
depth of the clear water, as determined by the clear water discharge and the height of the weir,
After careful inspection of the data, it was found that a different parnAmter, that is not
dimensionless, can account for such behavior. This parameter is the velocity ef a given flot
moving through a still water body divided by the depth of the water body (UI/hl). Such a
parameter, gives a measure of the amount of time the firont takes to travel a distance equal to the
depth of the body it is intruding. In this fashion, short travel times would be zharacteristic of
shallow environments and long travel times would be representative of deep water bodies. In
these experiments, the travel time of the front is fairly constant (within 10%) for each of the
weir heights considered in the present experiments. What is even more unique about the
behavior of the travel time, as it can be observed in Figure 5, is that the differences beoween
each subset of experiments is representative of the differences in the rates of mixing for a given
height ratio (h4/hl). Also of interest, is the fact that the slope of the mixing rate lines are
relatively constant and equal to about three for all the weir heights considered. On the other
hand, the different mixing rate lines in Figure 5, give different values of (h4/hi) for no mixing.
Such values would imply that there is a condition for which a dense bottom layer of a certain
height (h4) could exist without entraining the clear water above. This condition, in which a
density wedge forms at the comer of the channel, has been observed in these experiments when
the supply of dense fluid was suppressed and the clear water flow velocity was small.

0.4

* 220mm i,

0.3 M 300mm
a 380imm'

0.2 *-. 0

0.1
0

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

h4/hl

Figure 5. Relation between travel time and mixing rate lines
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IMPLICAT'ITONS FOR BOTTOM CURRENTS IN NATURE

In Figare 6, the variation of the neight ratio (h4/hl) for which there is no mixing in the
experimonts is seen to decrease exponentially whi travel Lime. On continental shelves, where
water depths ame on the order of 100 meters and current velocities are of about 1 m/s (Garcia,
1992), chaiacteristic wavel times will be on the order of 100 seconds. Assuming that the
exponeatial decay displayed in Figure 6 is valid for large scale flows, the dimensionless mixing
rate for deisity current fronts in coritinental shelves will be equal to three times the ratio
betwýýn the cur'rent body height and the total waler depth (h4/h ). Observations suggestg that
current depths are approximately eoqual to 5 mrters (Garcia, i,92), thus the dimensionless
miTxing rat. would be given by

q =-0. 15 (6)
Ut-

From Figure 3 and using h4/hl = 0.05, a Froude number Uf/(g'hx4)^l/2 = 1.7 results. Further
reduction gives a value of g' = 0.07 n/s02 and an excess fractional density of 0.7 % which is
quite reasonable for dilute currents as the ones being considered herein.
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LABORATORY OBSERVATIONS OF GRAVITY CURRENTS AND INTERNAL BORES
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A gravity current is a gravity-driven flow by the current's fluid-density difference from that
of its surroundings. When a similar flow advances into a quiescent two-layer fluid of which the
thinner layer has the same fluid density as the advancing current and distinct wave breaking is
formed at the leading wave, the flow is called an internal bore. Salient features of gravity
currents and internal bores are investigated in a horizontal flume with a lock-exchange device,
i.e. by ]ifting a partition that initially sepaawtes fresh water from saline water.

Up-to-date understanding of physical features of gravity cuirents are summarized in
Simpson's book (1987). As a gravity current advances, a characteristic 'head' is formed at the
leading edge of the gravity current, which is approximately twice as deep as the following flow.
The characteristics of the head are considered to be the ones that control the entire flow behavior.
The head profile is sensitive to the Reynolds number (R = Uhiv), the internal Froude number (F
= Uig'h), and the ambient flow conditions, e.g. the total flow depth, and the ambient flow
velocity, its direction and turbulence intensity, (Note that in the Reynolds number and the
internal Froude number, U is the velocity of the front advancement, h is the depth of the current
behind the head, v is the kinematic viscosity of the fluid, g' is the buoyant acceleration, g' = (P2

"- pl)g/p1, p, and P2 are the fluid densities of the ambient and the current, respectively, and g is
the acceleration of gravity.)

There are, according to Simpson (1987), two types of instabilities that are responsible for the
mixing associated with gravity currents: 1) billows which roll up in the region of velocity shear
above the advancing front and 2) a complex shifting pattern of 'lobes and clefts' located on the
face of the head. Simpson suggested that the billow formation on the upper surface of the head
is similar to the Kelvin-Helmholtz instability. Simpson also indicated that the formation of
'lobes and clefts' develops from the lighter fluid that is overrun by the gravity current's foremost
leading edge. (The foremost leading edge of the current is located slightly above the bed;
approximately 1/8 of the total height of the head.) Some ambient fresh water is trapped under the
head and entrained into the current from the bottom. This trapped lighter fluid is convected
upward through the denser fluid to form a complicated shifting pattern of 'lobes and clefts' on
the front face of the head.

Our laboratory experiments were performed in a 16.2 m long, 0.61 mn wide and 0.45 m deep
tank. The tank was initially divided into two separate chambers with an aluminum gate: the front
chamber is 8.9 m long and the back chamber is 7.3 m long. For the gravity curTent experiments,
uniformly mixed saline water filled the back chamber, while fresh water filled the front chamber.
For the internal bore experiments, a thin layer of saline water was placed beneath the fresh water
in the front chamber, and the fluid density of the thin layer was identical to that of the saline
water in the back chamber. A sharp interface was established by introducing saline water slowly
through a diffuser along the bottom against the side wall.

Throughout the series of experiments, the total depth of both front and back chambers was
set at 36 cm. A gravity current or an internal bore was created as a lock-exchange flow by lifting
the aforementioned aluminum gate to 20 cm from the bed; this partial gate opening is a similar
generation scheme as that used by Wood & Simpson (1984), which minimizes the free-surface
disturbance created at the gate and controls the current depth to approximately 9 cm.

Observations by laser-induced fluorescence were made in the front-chamber area at 4.5 m
downstream from the gate, approximately 50 times the average saline-water flow depth; all the
transient disturbances caused by the gate motion should have sufficiently subsided in the area of
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the observation and measurements. It is also noted that the length of the back chamber is long
enough so that flows in the obseniation area are n3t disturbed by the reflection from the back-
chamber end wall. In addition to the flow visualization, fluid density profiles were measured by
vertically traversing a conductivity-thermistor probe.

The saline water densities used in the experiments are 1002, 1005, and 1025 kg/m3 . For the
internal bore experiments, the initial saline-layer thicknesses in the front chamber are 0.5, 1.0,
2.0, and 3.0 cm. The ca=es with 1002 kg/m 3 saline densities are focused on in this paper
because the results with other densities are qualitatively similar: the complete set of data and the
results were reported in Grandinetti (1992).
Fgeatres of Gravity Currents

Figures la and 2 show our laser-induced-fluorescence flow images of a gravity current in a
longitudinal vertical plane at the center of the tank and in a horizontal plane 10.5 cm above the
bed, respectively. For the images shown in Fig. 2, a sketch to identify the locations of the laser
illuminating planes are depicted in Fig. 2c. Only the saline water (P2 = 1002 kg/m 3) was dyed
with fluorescein, and appear as green-yellow regions, having been illuminated by an Argon-ion
laser sheet.

The flow image in Fig. la shows the formation of billows on the front face; these small-scale
billows are found to be three-dimensional. This can be verified in Fig. 2 where the front's flow
pattern in the horizontal plane is irregular. This is, however, different from typical Kelvin-
Helrmholtz instability features in a plain shear flow created, for example, by a splitter plate; the
billows associated with the Kelvin-Helmholtz instability are at least initially two-dimwtsional,
i.e. the roll-up features of billows are long-crested. Instead, the three-dimensional front
formation observed here is consistent with the 'lobes and clefts' patarn indicated by Simpson
(1987).

There am several intriguing features in Figs. 1 a and 2 that need to be addressed. The
underside entrainment of the lighter fluid at the front of the gravity current is clearly seen in Fig.
la where the entrapped fresh water ascends due to its buoyancy. The leading edge is irregular as
seen in Fig. 2, including the formation of counter-rotating eddies (Fig. 2a), which are
presumably associated with the formation of U-shaped vortex loops on the front face. In the
flow following the front (see Fig. 2b), the pattern is irregular, altholigh it appears to be an
alternating pattern of saline and fresh water rows in the propagation direction indicating periodic
formation of large-size eddies.
Features of Internal Bores

Differences in initial conditions between the gravity current and internal bore phenomena are
minute: whether or not a thin layer of denser fluid is present initially. A limited number of
previous studies on internal bores are round, for example, in Wood and Simpson (1984),
Wallace and Wilkinson (1988), and Denton (1990).

Uur experimental results in Fig. 1 show that the flow characteristics of the gravity current
and internal bore are significantly different from each other, even when the pre-existing front
layer of the denser fluid for the internal bore is thin (0.5 cm for Fig. Ib, i.e. approximately 1.4
percent of the total depth). Unlike a gravity current, the front face of an internal bore is smooth,
and turbulence is generated at the rea, side of the 'head' by flow instability. Figure 1 shows that
the thinner the initial front layer, the steeper the front face and the earlier the formation of billow
roll-ups. Contrary to the case of gravity currents, the billow formation of an internal bore
r uembles that of the KeLvin-iel-mholtz instability, which appears to be two-dimensional at least
initially, i.e. the flow pattern is uniform in the direction transverse to the flow, which will be
verified later.

The distinct differences in the features between gravity currents and internal bores might be
explained by Simpson's (1987) 'lobes and clefts' formation at a gravity current's foremost
leading edge. Such formations are not possible in an internal bore because ambient fresh water
cannot be trapped along the bottorr where the denser fluid already occupies. Further explanation
is given here based on the vorticity creation mechanisms. The rate of change in flow circulation
F moving with the fluid can be expressed as:

-' _ _ _ _ _ _ _ _ = _ _ _ _ __

h • -" ""



3tD

Dr VpxVp) + EV2O "Vp xgV2u.A(*
Dt Pp A ]-dM

for the fluid with uniforra viscosity gt, which eo be justified since viscosity variation is
negligible in our saline-fresh water experiments. In (*), u is the fluid velocity, co is the vorticity
(i.e. curl u), p is the fluid density, r is the flow circulatior, and A is the area vector of the
surface s whose boundary is a single closed curve c. Based on (*), there are only two
mechanisms to create fluid rotation within the fluid domain (excluding the surface at the solid
boundary). These are baroclinic torque (the first integrand tzrm) and viscous-shear torque (the
last intlegrand term) (Yeh, 1991) both of which require the presence of a density gradient. Note
that the second integrand in (*) represents the trionsfer of fluid rotation by vorticity diffusion
from fluid parcels adjacent to the boundary of the integration surface s, and does not represent
creation of new fluid rotation within the fluid domain.

In the case of the internal bore, the fluid parcels along the interface are initially quiescent and
irrotational. Fluid rotation must be created at the interface by baroclinic torque: the pressure
gradient must be close to that of hydrostatic condition while the density gradient is normal to the
interface; note that it was shown by an order-of-magitude analysis that viscous-shear torque
plays an insignificant role compared with the role of baroclinic torque (Yeh, 1991). Once fluid
rotation was created by baroclinic torque, the rotationality is advected with the fluid motion
(Elelmholtz's theorem) and diffuses by viscous effects. This property manifests itself in the
forration of billows behind the ridge of the bore firnt.

On the other hand, in a grmaity current, the fluid parcels along the interface are advected from
inside of the advancing current The fluid within the currait is already vortical due to turbulence
induced by a) wave bi.aking behind the head, b) entrapped frtsh water under the leading edge or
nose (Fig. la), c) the bottom (no-alip) boundary condition, and d) flow disturbance caused by
the gate opening; hence, fluid parcels along the interface are originally vortical. This initially
vortical flow results in three-dimensiori and complicated patterns at the interface of the head.
The nature of inherently vortical flow at the gravity-current head can be an explanation for 'lobe-
and-cleft' formations as well as the reason for three-dimensioaml small-scale billow formations.

It appears in Fig. I and in other images not presented here, that the vortex formation behind
the head of th&e intemral bore resembles that of a separation eddy associated with a flow expansion
of the fresh water along a fictitious saline wall (i.e. the saline-fresh water interface).
Furthermore, roll-vps form a peiodic pattrn of turbulent regions at somewhat uniform
intervals. The periodic features of turbulence pakches might be related to the intermittent nature
of the flow, We conjecture that turbulence patces are formed by a "generation-advection" cycle
of the roll-up formation: as soon as the roll-up is fbomed, the large vortex of the roll-up is
advected behind the head, then the next roll-up is created, and this process is repeated. Note that
Yeh and Mok (1989) pointed out that trbulence-patch formations behind bores at the air-water
interface also result from the generation-ad vection cycle. In order to test this hypothesis, the
periodic turbulence-patch formation is quantified by the frequency of its generation; the
generation frequency can be measu-ed directly from the video images of our expeirients. This
measured fiequency shouid be reiated to the frequency associated with the excursion time of a
fluid paicel tiavcling around the vortex. Assuming the vortex size L (say the diameter of the
orbital motion) is comparable with the difference in height between the head and the current
depth behind the head (the actual length scale of the vortex is somewhat smaller than this
estimation), and using the vortex-velocity scale to be the bore propagation velocity U, then the
time scale for roll-up is found to be T, -t ILU. Computed frequencies 1/Tr shown in Fig. 3 are
in surprisingly good agreement with the measured frequency from the video images; the error
bars in the figure represent the 90 % confidence limit for the frequency measurements. The
excellent agreement in Fig. 3 strongly supports our conjecture that the periodic behavior of the
turbulence patches in internal bores is closely related to the cyclic behavior of the roil-up
formation between its generation and advection.

Another dye-tracing experimental result is shown in Fig. 4; only the initially thin (1.0 cm)
saline-water layer was dyed with fluorescein but the saline water with the same density behind
the lock gate was kept without dye. Note that this supplemental experiment was performed in a
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smaller scale apparatus. It is evident in Fig. 4 that the main portion of core fluid in the internal
bore consists of the saline water originally placed behind the gate. The fluid initially placed in
the thin layer is advected to form the mixed layer behind the head between the fresh-water and
the advancing saline water, and also to form the boundary layer along the bottom bed. This
clearly demonstrates the shortcomings of one-dimensional-flow models: flow velocity of each
layer would be uniform in the vertical direction in a one-dimensional-flow model, hence the fluid
of the leading bore was supposed to be made of the fluid picked up from the thin layer initially
placed in front of the advancing bore: the result in Fig. 4 evidently shows that this is not the
case. Another important point from Fig. 4 is that the fluid originally located behind the lock gate
is capable of intruding through the thin layer of fluid without significant mi.dng: as shown later
the fluid mixing is limited to a certain depth between the fresh water and saline water.

Nearly two-dimensional wave breaking patterns in the isiereal bore can be confirmed in Fig.
5 which presents flow patterns in a horizontal plane at 10.5 cm from the bed. (The same
visualization plane was used to obtain Fig. 2 -- see Fig. 2c for the position of the laser sheet). It
is emphasized that only saline water was dyed with fluorescein, i.e. the bright portions in the
figures represents the saline water and the black portions represent the fresh water. The bore is
propagating from left to right. A fuzzy broad band seen in the figure represents the head of the
bore. The initial roll-up can be seen as a thin black line within the fuzzy broad band. Once the
vortex is detached from the head on the illuminated plane, the roll-up tube breaks apart and
appears as a series of elliptic rings in the image of Fig. 5b. The ring appearance indicates that
even though the initial roll-up formation is two-dimensional (just like the Kelvin-Helmholtz
instability), once it is formed, the roll-up immediately possesses transverse variations. Such
transverse wave formations resemble the manifestation of longitudinal (streamwise) vortex
formations in the Kelvin-Helmholtz instability reported by Bernal (1981), Lin & Corcos (1983),
Lasheras & Maxworthy (1987), and others. It is not clear, however, whether the transverse
variations shown here are created by the formation of longitudinal vortices.

The occurrence of this transverse perturbation can be found in the results presented in Fig. 4.
The sequence of flow images in Fig. 4 evidently demonstrates the cyclic behavior of the roll-up
formation between its generation and advection, which was discussed previously. It appears that
the initial roll-up formation is two dimensional as shown in Fig. 4a, but the clean roll-up pattern
is immediately perturbed in Fig. 4b within a few seconds and becomes three-dimensional. At
the time of the three-dimensional vortex formation, the fluid mixing rate must increase drastically
according to the mixing-transition process proposed by Breidenthal (1981). (Note that later
Lasheras, et al. (1987) demonstrated in their well controlled laboratory environment that the
mixing transition does not necessarily coincide with the initial formation of streamwise vortices;
the mixing transition can be delayed well after the formation of organized three-dimensional
features.) Figures 4 and 5 show that the three-dimensional vortex formation appears to occur
immediately after the r,:1-up eddy is advected behind the head, which implies that fluid mixing
takes place immediately at the rear face of the internal bore. In fact, the rapid mixing process will
be verified later with the discussion of density-profile data.

This immediate perturbation shown in Fig. 5 suggests that the thiee-dimensional features
(transverse variations of the vortex tube) could be caused by a mechanism other than the
formation of longitudinal vortices. Consider the fact that rotational motions which initially have
rotational axes perpendicular to the density gradient are not stable and cannot maintain their
orientation due to an adverse buoyancy-force gradient created by the overturning motion itself
(just like the Rayleig-h-Taylor •,itabtity); a-' the rotatonal motiom] rend t become those, which
have axes parallel to the density gradient (i.e. pancake-like turbulence patches). Hence, the
initially created roll-up with the horizontal axis tends to bend, which causes transverse
variations. Mhis explanation for the three-dimensional variations is plausible for the present case.
To see this more clearly, consider the time scales of the vortex motion and the buoyancy effect.
The buoyancy time scale Tb can be estimated as the traversing time for a fluid-parcel to ascend
through the vortex length scale L by the buoyancy force: Tb - /Ig'. Assuming the vortex size
is comparable with the difference in height between the head and the current depth behind the
head and using the buoyant acceleration, g' = (p2 - p)gipI, the time scale for the buoyancy
effect is found to be Tb - 1.15 sec. The roll-up time scale can be estimated as before: an
excursion time for a fluid parcel to travel around the vortex. Using the vortex velocity scale to be
the bore propagation velocity U, the time scale for roll-up is found to be Tr - 7r L/U = 3.80 sec.

-I
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These rough estimates demonstrate that the order of magnitude of the buoyancy-effect time scale
and of the vortex-motion time scale are comparable, which supports the explanation for three-
dimensional variations discussed above. Hence, the transverse perturbation of vortices, which
appear in Figs. 4 and 5, could be caused by gravitational instability rather than the manifestation
of longitudinal (streamwise) vortex formations in the Kelvin-Helmholtz instability.
Density Prrafiles-

In our laboratory experiments, quantitative data for mixing processes were obtained by
vertically traversing the conductivity/thermistor probe. The results show the mixing phase
caused by overturning billows; small-scale density inversions in the profiles are interpreted as the
presence of small active eddies. Approximately 10 sec. after the passage of the head, these
small-scale density inversions are diminished. At this point, the region of overturning billows is
considered to be mixed, i.e. appreciable fluid mixing has already taken place in the vicinity of the
head. The results appear to be consistent with our discussion made for Figs. 4 and 5. indicating
that fluid mixing at the head is immediate and efficient in comparison to mixing in the current far
behind the head.

Two separate mixing processes are represented by the appearance of two distinguishable
gradients in the density profile plots. The upper portion of a profile has a uniform density
gradient caused by large-scale mixing of overturning billows. As mentioned, this mixing
process takes place dhietly behind the head. In the second gradient, the mixing process is
attributed to the continual shear flow created by the fast-moving dense water under the nearly
stationary mixed-fluid region. This fast-moving fluid layer is vortical due to the boundary-layer
effect which gradually erodes the layer, as do the combined effects of shear instability and small-
scale eddies within the lower layer fluid. The variations of mixed-layer thickness are measured
by the ratio of fluid density difference to the maximum density gradient, i.e. the parameter
a =, P2. . _, for the two separate mixing processes and are plotted in Fig. 6 versus

downstream distance from the head. The mixing right behind the head is immediate and very
efficient but once this process takes place, the subsequent mixing process due to shear is very
slow, in fact the thickness of the mixed layer decreases, instead, due to the buoyancy effect. All
the mixing is completed at the head. Figure 6 also indicates that the thinner the initial front
saline-water layer, the thicker the mixed layer.
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Figure 3. Piedicted and measured generation frequencies of the large-scale eddies: 0, gravity
current shown in Fig. 1a; the internal bores shown in Fig. lb-d. X: h = 0.5 cm.

*:h 1 cm. X: h =2 cm. T"he error bars repntsent 90 % confidence limits.

(a)

Figure 4. F-low pattern of an internal boem with the initial layer thickness of 1.0 cm: R =1050,

F = 0.70, p2 = 100)2 kg/,a3. Oay thle saline water initially placed in front of the
gawe was dyed with finorescein, while the saline water bdhind the gate was left
without dye. a) t tb) t to +2.8sem.
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ABSTRACT

"One-sidedness" in arrested salt-wedge flows is investigated with theoretical models
based upon two-layer approximations. These models include the effects of rigid bottom
boundaries and the effects of density interface displacement with respect to the centre of the
shear layer. The results indicate that inclusion of both interface displacement and rigid
boundaries in the model greatly contribute to the "one-sidedness" phenomenon and influence
the wave characteristics, especially their stability criteria. Dam from laboratory experiments
agreed well with the results produced by these models.

1. INTRODUCTION

"One-sidedness" (Keulegan 1966, Browant and Winant 1973) is a classic problem in
the study of mixing processes in two-layered stratified flows. This phenomenon, which is
associated with the breaking of the density interface, tends to be confined to the high-speed
side of the flow, and is commonly observed in arrested salt wedges. Figure 1 shows a
schematic of a salt wedge. The longitudinal sub-divisions are defined by Sargent and Jirka
(1987) using the force balances. Two different kinds of interfacial waves (positive and
negative waves) are observed; they propagate in opposite directions. The positive waves cusp
upwards and occasionally break down into the upper layer. They appear near the tip region
and propagate in the downstream directi-oi. In contrast, the negative waves cusp towards the
lower layer, and are commonly observed near the exit region. This is the one-sidedness
phenomenon in salt-wedge flows. Although many atmmpts have been made to interoret this
phenomenon as shear instability, they fail to clarify its mechanism, due mainly to the lack of
appropriate models.

One of the problems associated with analysis of this type of flow is the modeling of
the velocity profile. Most models employ time-averaged velocity profiles which are generally
anti-symmetric to the density interface. Interfacial waves, however, are known to be
intermittent and consequently must be considered as events dependent on the instantaneous
velocity distribution. Our observations show that instantaneous velocity profiles often have a
displacement between the centre of the shear layer and the density interface, and the stability
characteristics of such flows are known to be quite different from those of anti-symmetric

I'_ _ _ _ _ _ _ _ _ _ _ _ _ ___ _ _



case.; (Lawrence et al. 1991). Another modeling problem is that most of the stability analyses
have neglected the existence of rigid boundaries for simplicity. It is obvious that the bottom
boundary effects on salt-wedge flows are not negligible.

Tipeion , Quasi-equilibum region .. Exit region

_4-
Froth water:

powava

::. Salt wodgcP t>u.nga ve waves.

Fig. 1. Schematic structure of a salt-wedge flow with three longitudinal sub-
divisions (based upon itsforce balance) and its typical interfacial waves.

The effects of rigid boundaries were first investigated by Howard (1963), and Hazel
(1972) in inviscid theory. This study was followed by Lalas and Einaudi (1976), Lindzen and
Rosenthal (1976), and Fua and Einaudi (1984), to solve atmospheric boundary layer
problems. Hazel showed, in one of his models (continuous velocity and density profiles), that
flows were stable for 0<ZR<1.195-1.205, despite some numerical instability problems. These
models are, however, designed for atmospheric boundary layers, and hence their results,
owing to their density profiles, are not directly applicable to the salt-wedge flows.

In this paper, we report fast on the experiments we performed to obtain detailed
information on the flow field, which is often three-dimensional. These experiments
determined the appropriate functions for modeling the velocity profile for two-layered
stratified flow; we then calculated the stability characteristics assuming the existence of rigid
boundarie, interface displacements and viscosity.

2. EXPERIMENTS

The aim of our experiments was to identify the relationships among three-dimensional
flow structures, velocity profiles, interfacial displacements, lower layer thickness, and
associated interfacial waves. Sixty-three salt wedge experiments were conducted in the flume
shown in Figure 2. Flow vistulizaxion was employed to obtain the flow structure and wave
characteristics, while LDA and dye injection (see Yoshida 1980) were used to measure the
velocity profiles. Density interface position and thickness were measured by using
conductivity probes, and throughout the experiments the interface thickness was found to be
less than 1/10 of the shear layer thickness. This result justifies the use of two-layered models.

The results of the flow visualization can be surmmarized as shown in Figure 3. It was
impossible to eliminate side and bottom boundary effects from our experiments, and
consequently the flows in this channel exhibited a three-dimensional structure. The
secondary flows, induced by several pairs of stream-wise vortices in the upper layer, cause a
wave-like variation of U velocity in the lateral direction. For our convenience, we shall
introduce transverse subdivi sionsW Suwh. -as the hig%;h-spe -•-'• i(R,) -Ad Lh low-sp--d

region (LSR), according to the U velocity in the upper layer. In the HSR, the lower layer
tends to be thin because of higher ea stress, i.e. higher entrainment at the density interface.
In this region, the volume of entrained salt water is much larger than that of the back flow in
the lower layer, therefore mass-balance is not valid in a two-dimensional sense. Similarly, in
the LSR the velocity profile indicates less interfacial shear stress, which causes less
entrainment than back flow. By summing the fluxes of the HSR and the LSRI the salt wedge
maintains its stationary position, i.e. mass is conserved. Therefore, transverse subdivisions
must be considered when the experimental data are analyzed and interpreted.
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Figure 2. Experimental appatats. The bed slope of the channel can be
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Figure. 3. Three-dimensional flow structure, velocity profiles and interfacial waves
created mainly by the secondary flow (steam-wise vortex pairs) in an experimental
channel. X, Y,Z are Cartesian coordinates corresponding to the longitudinal, lateral
and vertical directions. U in this Figure is velocity in the X direction. Note that the
inflection point of the velocity profiles is located above the density interface in the
High Speed Region (b), and below in the Low Speed Region (c).



Flow visualization also revealed the existence of two different kinds of interfacial
waves. These waves are known as Holmboe instabilities (Holmboe 1962), consisting of
positive and negative instabilities of equal strength traveling at the same speed, but in
opposite directions with respect to the mean flow (Tsubaki et al. 1969, Murota and Hirata
1978, Yoshida 1980). Our study differs from previous work in that the positive and the
negative waves appear in different locations on the salt wedge. This is the one-sidedness
phenomenon in sat-wedge flows. The positive waves, which are induced by vortex tubes just
above the density interface, cusp upwards. They are observed most of the time in the HSR
near the tip region, and propagate in the downstream direction. The negative waves, which
cusp towards the lower layer, can be found in the LSR near the exit region, and propagate
slowly upstream. Interaction between these two waves occurs somewhere in the quasi-
equilibrium region.
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Figure 4. (a) Observed Velocity profiles and (b) definition of velocity and length scale.
The interfacial displacement e is removed in (a). Notations are: x, z = Cartisian
coordinatye system located at the density interface with u, u2 = velocity in upper and
lower layer; pl, P2 = density in upper and lower layer; = the lower layer thickness;
L, U = the characteristic length and velocity scales; e = the displacement of the centre
of shear layer and density interface (non-dimensionalized); 17 = the density interface
thickness.

Vertical velocity distributions measured in both the HSR and the LSR are shown in
Figure 4. In Figure 4(a), length and velocity scales are non-dimensionalized based upon the
definition given in (b), and the displacement e is removed. The results in Figure 4(a) indicate
that velocity profiles can be approximated by the TANHI function very well, and therefore th-.
non-dimensionalization by the length scale L and velocity scale U is justified. The non-
dimensional parameters are defined as:

P (I (1- ( )gL U
Pa 2, i Y Re = ,V (1)

where Ri is the overall Richardson number, Re is the Reynolds number, a is the wave
number, X is the wave length, v is the kinematic viscosity of water and g is gravitational
acceleration.
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Figure 5 shows observations of interface displacement , with the Richardson number
Ri and the lower layer thickness ZR. These plots imply that: 1) most of the positive waves
occur where the values of a are positive, 2) the Ri for positive waves tends to be large when
the corresponding e is large, 3) the negative waves have very smaJl Ri and relatively large
ZR, and 4) there is no specific value of e for the negative waves. It is especially interesting
that some positive unstable waves have much leager Ri than 1.4, which is predicted as the
stability boundary by Nishida and Yoshida (1987).
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Figure 5. Interfacial disptacement e vs. Richardson number Ri and lower
layer thickness ZR.

It can be concluded tat the interfacial waves on the salt wedge flows must be
analyzed by appropriate mode•l based upon more realistic velocity profiles and boundary
conditiows than have been used in existing theories. The following theoretical analysis is
therefore dcsigned to evaluate the effects of interfacial displacement and rigid boundaries on
the stability characteristics of two-laycred stratified flows.

3. THEORETICAL DEVELOPMENT

Hino and Hung (1982) analyzed the stability chaateristics of salt-wedge flows by
solving equations for viscous-diffusive systems, with iraliutic velocity Q'ANH function for
the uppri--layer velocity profile and second-order polyntomial function for the lowei-layer
vlocity profile) and density pi-ofiles (p(,) = exp [.y tan(Rz)/RJ where R is the ratio of shear
layer to density interface thickiess), ind having a rigid bottom boundary. Their analysis
failed, however, to provide any unstable solutions, and it could not distinguish the effects of
viscosity, diffusivity, rigid boundary and velocity profiles, owing to their complicated
models.

In the model described here we employed relatively simple and realistic velocity
(TANH function) and density (two-layer approximation) profiles to avoid any farther
complexity, then evaluated the effects of the rigid boundary and the interfacial displacement
separately. Two models are examined by the linear stability theory. One of them was
designed to test the effects of a rigid boundary and the other to investigate the interfacial
displacement. Their velocity and density profiles are;: shown in Figures 6 and 7. The
governing equation is derived by applying; infinitsihnaliy small monochromatic pettarbadons
to the two-dimensional, incompreasible flow system. A two-layer approximaftion of density
distvibution is male for simplification. Th.-, strernm function of the pertumbatioy is defined as
ONz) exp(iax--ct)], whre z) is Lte complez amplitude. This sticain function is governed by
the On_-Sommerfeld (0-S) equation:

d2 2aufi4 + d2
(uZ)- d~z ) dzil' iaR~e \dz dz crz 2

______________



where i is v-CT . The lower and upper boundary conditons are given by:

D(z) = d = 0 at z = -ZR,oo. (3)

The matching conditions at the density interface, i.e. the continuity of both normal and shear
stress, can be written as:

01 = 0
d q > _d u ld z O l d0 7 ' -D 2-
dz u5 - dz u-Lc ,

d 24 [ld2 u/dz2  
2 ](D =d 1 2 [d-u/dz2  2,,,, IU- _,<>,,,.g _ a,<,, ,Z - _a]0

i V + y a[Re (u -c) -3i a]~-d yc Re -

-oL - i Re l-
dz3 +c[ u- -3ic z u-c

at z = 0, (4)
where subscripts 1, 2 correspond to the upper and lower layer, respectively. Details can be
found in Nishida and Yoshida (1987). h1le Runge-Kutta-Gill numerical integration and the
filtered method (e.g. Betchov and Criminale 1967, Gersting and Jankowski 1972) have been
employed to solve the system (2), (3), (4). The eigenvalues c are obtained by the shooting
method. The results are plotted along with the experimental data in Figures 6 and 7. Re-=100
is chosen as a typical value to match the range of experimental data (29.4< Re <549.0).
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Figure 6. ZR effects on the stability of positive and negative waves. (a) Growth rate
aCi and phase velocity Cr of Re=100, Ri=0.4, a-=0.8 solutions, (b) comparison of
the neutral boundaries (aCi=O.O) far Re=100 and experimental results.

Figure 6 shows that the presence of a rigid boundary, goreatly st•-abilizes the neg,-i-v
instabilities when ZR,, 2.0. By contrast, the positive instabilities are only weakly influenced
by variations of ZR. For ,he positive instabilities, the only noticeable difference between the
un-bounded case (i.e. ZRI&oo) and ZR< 5.0 is that the wave number of the most unstable
waves tends to be Smaller (longer wave length) as ZR decreases. Similar results were found
in the inviscid theories (Yonemitsu 1991). For the case Re=100, the stability criteria
predicted by our analysis for positive and negative waves are ZR=0.46 and 1.10, respectively.
This means that no wave can be found for 0<ZR<0.46, only positive waves can exist for
0.46<J.Z<1. 10, and both positive and negative waves may be observed for 1. 10<ZR cases. In



salt-wedge flows, the tip region (where ZR is very small) shows no waves; then positive
waves appear as the lower layer thickness increases. Further downstream, where ZR is large
enough, both positive and negative waves are observed. Therefore these observations are
consistent with a theoretical analysis which includes consideration of rigid boundary effects.
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Figure . Stability boundaries with interface displacements (Re=100) and
experinental resalts. Ric+ and Ric- correspond to the critical Richardson
numbcr for the positive and negative instabilities, respectively.

Nishida and Yoshida (1987) show that the critical Richardson number Ric (which is
defined as the maximum Richardson number for unstable waves) is relatively insensitive to
the variation of the Reynolds number Re (for 20< Re <1000) and remains constant (Pidc-i.4).
The experimental values of Ric for positive waves (Ric+) are, however, larger than our
model's prediction as shown in Figure 6. This problem can be clarified by considering the
effects of the interfacial displacement e. In Figure 7, s--0.0 and e=0.25 are chosen as
examples. Similarly to the results of Lawrence et al. (1991), the stability boundaries for the
positive and negative bnstabilities bifurcate and stability characteristics change drastically as &
increases. Ric' gets larger as e increases (for example, Ric+u2.2 when e=0.5) and therefore
the relatively large Ric for positive waves from our experiments can be understood as a result
of the interfacial displacement. In a somewhat similar way, the negative waves with large
wave numbers can be unstable when interfacial displacement effects are included.

Analyses of both rigid boundary effects and displacement effects indicate that the
positive insuability always has the greater predicted growth rate for any given Ri. It means
that the Holmboe (1962) instability can occur only when ZR=oo and e=0. For salt-wedge
flows, 'one-sidedu.ess' is therefore the natural state of the wave phenomenon because of the
existence of rigid boundaries and interfacial displacement.

4. CONCLUSIONS

The "one-sidedness" phenomenon is explained by a hydrodynamic stability theory
including.the effects of rigid bound¢ary and interfacia, dislacmen. Our viscous mdodl
show the significant details of the salt-wedge flows such as the critical Richardson number
(Ric) and unstable wave numbers. In the case of Re=100, the stability criteria are given as
ZR=-0.46 for positive waves and ZR=I.l for negative waves, i.e. 0<ZR<0.46 means no waves,
0.46<ZR<1. 10 means only positive waves, and 1.10<ZR means both positive and negative
waves can be found. Also the critical Richardson number is determined as Ric=1.6 for
e=0.25 and Ric=2.2 for e=0.5. Our experimental data verify these theoretical results.
Because the characteristics of Holmboe instabilities are very sensitive to the parameters ZR
and 6-, experimental data must be analyzed and interpreted carefully. For salt-wedge flows,
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'one-sidedness' is the natural state. of the wave phenomenon because of the existence of rigid
boundaries and interfacial displacement.
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Abstract

The dilution of negatively buoyant discharges released into a turbulent current has been
studied both in the laboratory and by means of advanced numerical models. The
experiments showed that the dilution is mainly due to vertical turbulent mixing and depends
on a buoyancy induced dispersion og the plume. These findings have been incorporated into
a calibrated integral description of the dilution. A 3-D numerical model with a k-e
parametedisation of the turbulent mixing has been applied to the problem and a comparison
between this model and the experiments been made. The conclusions are that the dilution can
be realistically described by the model.

1 Introluction

Co-flowing negatively buoyant plumes may be formed when dense waste water is continously
released from point sources near the bed into a turbulent current, as for example when
industrial waste water with large concentrations of salts are released into marine environ-
meats. Although the density difference between the discharge and the receiving water may
be relatively small, when seen from a hydrodynamical point of view, the nature of these
wastes often require that concern is given to the dilution in the immediate vicinity of the
discharge. The propagation and dilution of dense bottom plumes may also be of theoretical
interest as the situation with a continous release of negatively bouyant water constitutes one
of the simpler steady experiments with turbulent mixing across a density interface.
Dense bottom plumes have traditionally been studied in the context of spills of heavy gases
in the atmosphere (Puttock et al., 1984; Zumsteg and Fannelop, 1987), while the opposite
situation with a light surface plume is more often encountered in the marine environment
(Petersen, 1992; Thomas and Simpson, 1985; Weil and Fischer, 1974); a situation which has
some similarities with dense bottom plumes.
The aim of the present study is to investigate the dilution of dense bottom plumes. First, a
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Fig. 1 Dense bottom plume.

series of laboratory experiments is discussed using an idealized integral theory that describes
the dilution of the plume. Next, a 3-D numerical model is established and the results are
compared to the experiments in order to validate the models in this specific case and to
incorporate the data in a more general frame. Finally are the conclusions summarized.

2 Dense bottom plumes

To guide the analysis of the experiments an idealized theory where the dilution depends on
a bouyancy induced spread and vertical turbulent mixing is developed below. The distribution
of buoyancy in each cross section is characterized by a plume height and width, that both are
defined as integral scales. If the local time average density difference is denoted AP,, the
excess mass m in the cross section may be defined from

M=f Ap, dydz (1)

where y and z are lateral and vertical cartesian coordinates, respectively.

- _ -. . . . . . . . . . . . . . . . . . . . . . . . .. . . . . .. .. . . . . . .. .. .. .. . . . . . . .. .. .. . . . . .. .. . . .. . . -



The plume height h and width b may be defined from the second moments of the density
difference distribution as for example

h2 -1 1 FAp z2dydz (2)

for the plume height and similarly for the width. The dilution of the plume can now be
described in terms of the downstream development of these cross sectional characteristics.
Assuming that the plume is conveyed downstream with the ambient velocity U(, the lateral
expansion some distance from the source may be approximated by a bouyancy induced front
(Larsen and Sorensen, 1968) with celerity

where x is the streamwise coordinate; g is gravitational acceleration; p is the density; a is an
empirical correction and Ap =W/(8 m h). Applying continuity and assuming the dilution to
follow a Fickian diffusion law and postulating that the dispersion and the frontal motion are
independent the two processes can be combined to

db= Vf. K--y (4)

dh Vf h_ f. . - (5)
dvc bU, U~h

where Ky and K, are turbulent dispersion coefficients. The vertical dispersion is assumed to
depend on the stability through a Richardson number as

K,=K,,,(l +ORO) where R,,.-I _h (6)
PU1

K, is the dispersion coefficient in the neutral situatiou; u. the friction velocity and 3 is an em-
pirical factor.

3 Laboratory experiments

The experiments were carried out in a recirculating hydraulic flume, 20 m long and 1.5 m
wide, with a flat epoxy painted bed. A dense bottom plume was established by vertically
discharging colder tap water with low velocity through a 2.8 cm diameter nozzle located 5.0
in from the downstream end of the flume and in level with the bed. The metered discharge
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Fig. 2. Measured (open symbols) and calculated by numerical model (filled symbols) relative

plume width as a function of a relative downstream dis tance from the source. Thle full

line corresponds to data from (Weill and Fischer, 1974). Here D is a virtual source

diameter and FD =Ua /I~gDAp/p

went through a storage tank and had a temperature at 6 - 7 °C. The ambient temperature in
the flume was app. 18 °C with a drift during experiment at 0.5 "C/hour.

The temperature difference between the plume and the ambient water wvas measured by means

of a vertical array of 8 thermocouples, connected to a PC through an AD converter. The

thermocouples were mounted on a step-motor controlled carriage which could automaticaily

traverse the plume. The resolution of the temperature measurement was 0.02 °C and the

accuracy of the order 0.05 °C. By means of a standard table implemented on the PC each

measurement of temperature was converted into a density-difference in order to allow for

non-linearities in the conversion when the temperature fluctuates. Further details of the setup

can be found in (Petersen, 1994; Petersen and Larsen, 1992).

4 Results

In each experiment the time average density difference in 15 verticals evenly distributed over

the plume cross section was measured in 6 cross sections located with 0.5 m intervals. These



0 (cmfs) (cm) (C) (lmin) (C)

1 7.1 17.0 18.7 4.4 7.1
2 7.1 17.2 18.4 2.1 7.2
3 9.4 17.0 19.0 3.0 7.6
4 9.4 17.0 19.0 4.8 7.5
5 15.0 17.2 18.5 4.8 6.5
6 15.0 17.2 18.3 7.4 6.4
7 20.5 17.0 18.0 9.4 6.6
8 20.5 17.0 17.5 2.7 6.0

Table 1. Experimental conditions

data allowed for a direct estimation of the integral scales the excess mass, the width and the
height previously defined. A number of 8 experiment were carried out, covering a range of
ambient velocities, discharges and density differences as shown in Table 1. These values
ensures that the flow and mixing processes appear as fully turbulent. The downstream
development of the plume widths are shown in Figure 2 in a form suggested by Weill and
Fischer (1974), which is suitable for immiscible surface plumes (full line). It appears that due
to the turbulent dispersion the measured plumes are wider than predicted by the simple theory
and that the development of dense bottom plumes largely fbllows the pattern seen for surface
plumes.
The experimental results are reduced by means of a calibration of the integral relations (4)
and (5). The transverse dispersion coefficient is found to Ky = 0.12 ufH from a tracr
experiment and the vertical dispersion coefficient is estimated using a numerical model of the
downstream development of a neutral plume in a logarithmic boundary layer to K,, - 1.35 uf
h (0.57-h/H). Summing the difference in the calculated and measured change in dilution
between two cross sections the error as a function of the two empirical constants can be
estimated. The combination of the constants ct=1.2 and O3= 1.0 minimises this error and
agreement between the calibrated model and the experiments illustrated in terms of the
average density difference.

5 Numerical experiments

The dilution in the near field is the result of a 3-dimensional and fully turbulent flow with
pronounced buoyancy effects. The mathematical model consists of the 3-dimensional
hydrodynamical equations where buoyancy effects are included through an equation of state
and a transport equation for temperature. Turbulent stresses and transports are described
using an eddy viscosity concept. Boundary conditions are symmetry conditions at the surface
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Fig. 3. Density difference obtained from measurements (open squares) or numerical model
(filled squares) vs. integral description.

the two sides, prescribed distributions of velocity (logarithmic law) and temperature at the
upstream end, simple outflow at the downstream end. The bottom boundary layer is
described using a logarithmic wall law. The discharge is here described as a point source of
flow and buoyancy, thus the complex details around the discharge is not resolved.
The resulting set of equations are solved using the system Phoenics which is based on a
Simple type coupling between pressure and momentum and an iterative solution procedure
(Rosten and Spalding, 1987) and here used in combination with a standard k-e turbulence
closure. The influence. of buoyancy on the turbulence is in the k-c model incorporated as
additional sinks in the equations for k and e (see Rodi, 1987). The resolutions used are .06
x .03 x .01 m in the tluee cartesian directions.

6 Results of the numerical experiments

The theoretical basis for the model has been extensively tested in turbulent boundary layers
and also in some cases where buoyancy is important (Rodi, 1987) so only dense bottom
plumes will be discussed here. A number of calculations with the k-e model set up as close
as possible to the conditions in the experiments has been made and the results treated in a
similar manner as the results from the experiments. In Figure 2 are the plume widths from
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the numerical calculation displayed where it appears that the transverse propagation is
reasonably reproduced. In order to verify the dilution the plume scales obtained from the
numerical model are used to recalibrate the integral description discussed previously.
Following the same procedure as above, this yields a = 1.2 and 3- =1.25. In Figure 3 is the
agreement uetween the numerical model and the calibrated integral description shown; the
variance is in this case not due to randomness but can only be attributed to differences
between the theories. If the two empirical factors summarize the experimental data the
recalibration indicates that the numerical model slightly overestimates the vertical mixing as
a larger damping factor 0 is needed.

7 Discussiou and conclusions

The study has examined the dilution of co-flowing dense bottom plumes in a turbulent
boundary layer and shown that the dilution can be described as the result of two important
factors that are a buoyancy induced spread, which in principle changes the area subject to
mixing, and a vertical turbulent mixing that is attenuated by the density gradient.
It has also been demonstrated that a 3-D hydrodynamical model can reproduce these
processes.
A general comment ir that the study has shown that the dilution depends on a few
fundamental processes and as the problem as posed here is steady and has relatively well-
defined boundaries it may be well suited as one benchmark case for testing of models for
mixing across density gradients.
The more specific conclusions may be summarized as follows
i) Within the range of ambient velocities and density differences used here the dilution of a
co-flowing dense bottom plume can be described using the integral model discussed above,
with two constants a= 1.2 and 9 = 1.0 both empirically derived in the laboratory.
ii) The numerical model with a k-e turbulence closure gives a realistic description of the
dilution.
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The density front bounding a gravity current is usually highly unstable and this leads to mnix-
ing between the fluid of the grAvity current and that of the surroundings. We describe a new
experimental technique to determine the synoptic density structure of gravity currents, and to
examiune thesc mixing processes. We find that substantial mixing occurs in the early stages of
the evolution of lock-release gravity currents and that this results in a complex internal density
structure. We present analyses of three experiments, for three different values of lock aspect
ratio. By comparing thes gravity currents we build up a picture of the processes of mixing
and detr-ainment. We also quantify the mixing and determine the overall entrainment rate.
1. Introduction

Gravity currents are produced when fluid of a given density is released into fluid of a dif-
ferent density at a horizontal boundary. The buoyancy forces are constrained by the boundary
to produce a horizontal pressure gradient which dr-ives a flow along the boundary. The sim-
plest configuration, often referred to as a lock-release, consists of two fluids of different
densities initially separated by a vertical barrier. When the barrier is removed the denser fluid
flows along the boundary underneath the less dense fluid.

This flow occurs in many situations of practical interest. For example, when a door is
opened betwecn two rooms containing air at different temperatures, the air from the colder
room enters the warmer room and flows along the floor as a gravity current. Another example
occurs when a dense gas is released (possibly accidentally) from a storagev container. Wile

ahese two examples closely resemble the lock-release flow, other naturally occurring gravity
currents demonstrate similar dynamiics, for example the sea breeze and turbidity currents
(Simpson 1987). An understanding of the simpler lock-releaga flow is also an essential pre-
requisite to modelling a wide range of more complex flows.

An aspect of these flows which is of much practical interest, and which is poorly under-
stood, is the mixing of the current with the ambient fluid and the consequent dilution of the
fluid within the gravity current. Simpson & Britter (1979) quantified the bulk mixing rates for
steady state currents, but did not determine the details of die density structure. Recent work by
fallworth et al. (1993) suggests that the fluid within the head of the gravity current is well
mixed, and that the mixing rate depends on the phae of the evolution of the current. When the
barrier is removed the current quickly accelerates and enters a constant velocity dslumping
phase'. During this phase the fluid is still draining from the lock and the current effectively
has a constant supply of fluid from the rear. Once all the fluid has drained from the lock, and a
bore on the interface reflected from the back of the lock reaches the front of the current, the
flow enters a 'similarity phase' in which the velocity decreases with distance. Hallworth et al.
(1993) claim that no mixing takes place during the slumping phase, and that all dilution takes
place downstream of the transition to the similarity phase.

In this paper we use a new experimental technique to measure the density structure within
gravity currents generated by lock-release in a channel by use of a passive dye and image
processing techniques. These measurements provide a synoptic picture of the dye concentra-



tion averaged across the channel. The molecular diffusivities of the dye and of salt are compa-
rable, so dye concentrations may be taken to be equal to salt concentrations. From thett' meas-
urements we are able to determine the internal structure of the gravity currents and to investi-
gate how the ambient fluid is entrained. We examine the dependence of the mixing aud the
internal structure on the aspect ratio of the lock, contrasting tall, narrow locks with shallow
wide ones. In §2 the experiments and the measurement technique are described, and in §3 the
results are presented. The results are discussed and the conclusions given in §4.
2. The experiments

Tile experiments described in this paper were carried out in a rectangular perspex channel
205 mm wide, 500 mm deep and 3480 mm long. On one side of the channel four fluorescent
strip lights were mounted horizontally behind a diffusing screen to provide back-lighting.

Each experiment was performed as follows. The channel was filled with tap water to a
depth H. A vertical perspex gate was then positioned at a distance xo from one end of the
channel to form a lock. A quantity of salt was dissolved into the water in the lock to create the
density difference. A measured quantity of dye was also added to the water in the lock to en-
able flow visualisation. The gate was then smoothly withdrawn, leaving the dense fluid to
flow out along the floor and form a gravity current. The progress of each experiment was re-
corded using a video camera and video tape recorder. For practical reasons the camera was
kept at a fixed position for all the experiments, and the field of view was restricted to the first
half of the channel. For different experiments the aspect ratio R = H 0xo of the lock was var-
ied by changing the distance x0 of the gate from the end wall and the height /-1 of the water in
the channel. For the three experiments reported here the values of these parameters were i) xo
=300 rmm, H = 200 nn, R = 0.78; ii) xo = 400 mm, H = 400 nun, R = 1.0; ii) xo = 150 nun,
H = 267 amn, R = 1.78. The reduced gravity was 120 nun S-2 for all the experiments.

Measurements of density structure were made by digitally analysing the video tapes using
Diglmage, an image processing system developed at DAMTP (Dalziel 1993). The attenuation
of the back-lighting was measured and related to the cross-channel dye concentration. The
measurement process involved two stages of processing.

The first stage is to measure the attenuation of the background lighting. If I0 is the light in-
tensity of a point in the video image when no dye is present in the flow, and I is the intensity
at the same point when dye is present, the attenuation is dlefined to be the ratio 1o. The image
processing system digitises a frame of video tape by recording the light intensity at 512X512
pixel points across a video frame, and can be used to measure I/7O. Due to the nature of the
measuring system the digitised intensities do not correspond directly to actual light intnsities
but, if I represents actual light intensity and i represents digitised intensity, there exists a
smootlh, single-valued functionf such that

I =f(i) (1)
and the system may be calibrated. The calibration was carried out by using a grey scale for
which the optical transmittance of each level of grey had been determined.

The second stage of the measurement process is to infer the concentration of dye in the
flow from the attenuation measurements. If the flow is taken to be two-dimensional, i.e. there
are no variations in the cross-channel direction, and the light received by the video camera is
assumed to hrzve passed through the flow in a direction perpendicular to the channel walls,
then the concentration of dye is constant along each ray of light received by the camiera. The
attenuation per unit width of the channel is therefore also constant, and the cross-stream dye
concentration, C, can be related to the attenuation by an equation of the form,
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C = O S(1/1") (2)
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the intensity of the back-lighting. "11his wa•o u'•li .o he the ease, to 2• :tiror within tt'e '
level of the system (± 2%). In order to check tie dye calilration furtctboi in (2), the total
amount of dye in the flow, which is conserved, was determined froml the digitised iniages at

successive times during an experiment. It was found that the total quantity of dyc remained
constant to within 10%.

Measurements were also made from the digitised images of the speed of advance. of lhe
gravity current along the channel, and of the height of the head. The spatial resolution wa.s ± 5
mm and &Ae temporal resolution was ± 0.04 s.
3. Results

Figures 1 to 3 show iso-concentration contours for the three experiments with aspect ratiods
R - 0.67, 1.00 and 1.78, respectively. Iso-concentration contours are plotted in each figure for
concentration values of 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, and 0.05 of the initial concentra-
tion. Figures 1 and 2 show the evolution of the current over a propagation distance of ap-
proximately four lock lengths, while figure 3 shows the evolution of the larger aspect ratio
lock as it propagates to nearly ten lock lengths.

The initial development of the flow is quite similar for all three cases with the vertical in-
terface released by the withdrawal of the lock gate collapsing downwards and producing an
outflow along the floor of the channel. The collapse is initiated at the base if the column of
dense fluid, where a formative gravity current 'head' develops, which is bounded downstream
by a sharp front. The head immediately rolls-up to form a vortex-like structure which engulfs
less dense fluid from the reax. Above the outflow the contours are spread horizontally with the
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area of nrixed fiuid increasing with increasing lock aspect ratio. This increased mixing may be

duz to the increase in influence, at higher aspect ratios, of the initial disturbance produced by
&he withdrawial of the lock game.

c'orrespouding ro the outflow of dense fluid at the base of the tank there is counter flow of

fPsh fluid towards the rear wall at the higher levels. This causes the interface to be sheared

over towards the horizontal as can be seen in figures l(a)-(c), 2(a)-(c) and 3(a)-(c). Note that

the density front Ixunding the head of the counter flow is much weakc.r than that bounding the

outflow. By the time the current has propagated approximately 2-3 lock lengths (figures 1 (c),

2(c) and 3(c)) the fresh water has reached the end of the wall of the lock and the whole vol-

,aue of the dense fluid is now propagating along the tank. This transition represents the end of
the slumrping phase during which the gravity cuirent is evolving from the lock and behaves as

though the lock were infinite in horizontal extent. After this phase the finite volume of the

lock becomcs important.
Fig.ures I to 3 (c)-(e) show the subseýquent evolution of the flow, which is quite different

for eah of the three aspect ratio cases. The low aspect ratio case (figure 1) develops a classi-

cal gravity current shape with a raised head and thin trailing flow (Simpson 1987). The whole

volume of the flow moves downstreýAm with the front moving faster than the rear, so that the
length of the current
extends. Waves form
and break at the rear of

(a) dthe head (figure I(d))
and this causes ambient
fluid to be entrained.
The mixed fluid is left
behind the head and a

(b) ~region of stratification
develops in the trailing

__..... ._ _ -part of the current. In
figure l(e) it can be seen
that a stratification has
developed over almost

(c) the complete length of
the current, although the

region in the head re-
mains well mixed. Fluid
which is mixed and left

(d) behind at the head is
replaced by dense fluid
from the rear, so that the
concentration of the
fluid in the head re-
mains fairly constant

(e) / 0 over the propagation
distance shown in this
figure.

Figure 2: Evolution of iso-concentration contours for aspect ratio R 1.00 at The evolution of the

values of non-dimensional front position I = (xr-xo)/x,, (a) 1--0.60, (b) 1 =1.11, (c) flow for unit aspect ra-
1=2.10, (d) 1=2.56, (e) 1=3.08.
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tio, shown in figures 2(c)-(e) is quite different. When the fresh water reaches the rear of the
lock (figure 2(c)) a large vortex occurs at the trailing edge of the current. The origin of this
vortex is a shear instability that grows, from an initial disturbance caused by the gate, on the
strongly sloping interface of the slumping dense fluid (figure 2(b)). This vortex is seen to per-

__ __---'_ _ __ _ _ sist throughout the re-
(mainder of the experi-

(a) ment. Dense fluid is
drawn upwards into the
vortex resulting in a

Nlarge amount of mixing
(b) within this structure

(figures 2(c)-(e)). The
leading edge of the cur-

(c) rent is again bounded by
a sharp front, but the
structure of the current
is different from that

(d) shown in figure 1 as the
trailing flow is of com-
parable depth to the
head. Waves form at the

(e) head and evidence can
be seen of these break-
ing in figure 2(d).
Rather than leading to

() the formation of a
(f)_ _ _ _ _stratified trailing flow,

as in figure 1, the wave
breaking leads to the
formation of a stratified

(g) region between the vor-
__-_--_ "___ - tex structure and the

head (figure 2(e)). The
fluid within the head

(h) region itself remains
relatively uniform and at
the initial concentration
of the lock over this

(i) •small propagation dis-
_______-----____ ._____ ,__--__, - _, __,_- __-_ _ tance.

The high aspect ratio
case is shown in figure

(I-)•3. The frontal structuce
- --again has the form of a

Figure 3: Evolution of iso-concentration contours for aspect ratio R = 1.78. at sharp transition and a
values of non-dimensional front position I = (xr-xo)/xo (a) 1=1.33, (b) 1=2.17, (c) distinct head, but the
.=3.00, (d) 1=3.73, (e) •-4.53, (f) 1=5.27, (g) 1=6.80, (h) 1 =8.13, (i) 1=8.93, (I) I internal structure of the
=9.60.
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current is different again. Gnce the counter flow has reached the bac& wall of the lock, the re-
gion of fluid of initial concentration in the head is of horizontal e-tent cor,.parable to its depth
(figure l(c)), so that there is no longer a supply of dense fluid from thie rear. The waves
formed at the head now break directly into mixed fluid amd this produces a strong horizontal
stratification, which can be seen developing in figures 3 (d)-(e).There is ii~tle evidence of the
strong vortex tar-ucture observed in figure 2. This may be a result o2 the increased mixing in
the earliest phase of the flow (figure 3(b)), which produces a diffuse density st-uctuie behind
the head.

By the. time the current has progressed about five lock lengths (figure 3 (e)) all of the fluid
in the current has been mixed to some extent with the ambient fluid and there is virtually none
remaining at the initial concentration. The densest fluid in the current is now confined to the
immediate region of the nose and, consequently, the flow is no longer fronzogenic. The hori-
zontal density gradient in tie iear of the current is now tending to weaken the horizontal
density gradients, rather than to sharpen them. ýincc fluid detrained fP:om the head is now re--
placed by less dense fluid from the rear, the head now becomes prr..- ssively diluted, as can
be seen in figure 3(f)-(). The stratified region continues to deveic 'n a similar way to that
described in the case of the low aspect ratio lock. However it can be seen in figure 3(j) that by
the time the current has propagated ten lock lengths, the region of stratification extends almost
up to the front, with appreciable vertical stratification within the head.

Despite these differences in the internal stiucture the velocities of propagation of the thiee
currents were very similar, and coastant, over the common propagation range of the three cx-
perirnents, with the Froude numbers based on the total water depth H taking thv values 0.45,
0.45, 0.44 for aspect ratios of 0.67, 1.00, 1.78, respectively. These values agree closely with
the 'universal' value of 0.46 determined by Barr (1967). in the high aspect ratio experiment,
the current began to decelerate after it had propagated approximately 8 lock-lengths. The head
heights also behaved in a similar fashion for each flow. The maximum height of the 0.05 iso-
concentration contour within the head increased to a value somewhere between 0.45 and 0.55
of the total depth for each experiment . This value was maintained for a time and then began
to slowly decrease. it is worth noting that a steady dissipationless current would occupy half
the total depth, and ;t w 'd not be possible to produce such a flow with greater fractional
depth (Benjamin 1968).

We can further quantify die mixing by examining in more detail the amounts of fluid at dif-
ferent concentrations as the flow develops. Figure 4 shows the total area (the volume per unit
width of channel) of tfe current below a given concentration level, for the three different as-
pect ratio lock-release flows shown in figures 1 to 3. The areas are non-dimensionalised with
respect to the initial area of the lock. The concentrations are non-dimensionalised with respect
to the initial concentration of the fluid in the lock. The lowest set of points on each graph cor-
respond to a concentration threshold equal to the initial concentration, with further sets of
points plotted at 0.8, 0.6, 0.4, 0.2 and 0.05 of initial concentration. We shall refer to each set
of points as an isocline. The ordinate values of the 1.0 isocline then correspond to the amount
of fluid remaining at the initial concentration, which is fluid that has not undergone any mix-
ing. The 0.05 isocline may be taken to nominally define the boundary of the current, so that
the ordinate values of the points correspond to the total volume of the current, and the slope of
the isocline corresponds to the rate of entrainment.

As can be seen from the figures, at the initial instant all the points lie on the value of 1.0
(with slight scatter due to experimental error) indicating that the total volume of fluid in the
lock is at the initial concentration. As the current progresses and mixes with the ambient fluid,
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fluid with concentration between 1.0 and 7.D r-

0.05 is formed and so tie isoclinu. diverge.
The divergence of the isoclines is con- -__,___-_--_...

strained by the condition that the total tSo o Q o o 6, • €, __P Q.*.. o
amount of salt in the flow is conserved. For - 1 ... o ~--
example the mi.ing of a given volume den. -:

fluid could either result in the production of_*,________-
a large armount of dilute fluid, and so strong
convergence of low concentration isoclines, * '- 1,: 'o
or in the production of a smaller volume of (a)
higher concentration fluid, and so less diver-
gence of higher concentration isoclines.

Considering the three graphs in figure 4
we can see that in each case the 'total vol-
ume' of the current increases ahmost linearly • • o
with distance propagated, which indicates o o °

that the initial 'slumping phase' and the sub- ] '• .
sequent flow produce very similar rates of om .
overall enttainment of ambient fluid. The v v
slopes of the 0.05 isoclines are comparable H _ _ _ _

in all three cases with the common value IM .. ..... ...........
being approximately 0.17 Aox•-'.The graphs (b)
also show that there are qualitative and
quantitative differences in the way in which
the mixed fluid is distributed across the con-
centration range.

In the low aspect ratio experiment (figure • -

4(a)) most of the mixed fluid is of concen- o ... ._ .o ... o .

tration between 0.05 and 0.43, with progres- -

sively less fluid at higher concentrations. " - - - -

This indicates that the mixing occurred pri- ' . " -

marily at the edges of the current to produce
dilute fluid. In the unit aspect ratio experi- (c)
ment (figure 4(b)) most of the mixed fluid
has concentration between 0.6 and 0.4, with Figure 4. Fractional areas A/A0 below given concen-

there being progressively less fluid at lower tration thresholds as a function of non-dimensional front

concentrations. This indicates that ambient position (xr-x0)/x0 for different values of lock aspect
ratio R: (a): R=0.78: (b): R=t.Y) ; c): R=1.78. Non-

fluid was mixed more deeply into the cur- dimensional concentration thresholds denoted by: A.
rent, which is consistent with the qualitative 0.05; 0, 0.2; , o.4;+, 0.6; x, 0.8; V, 1.0. (Note the
features of the mixing due to the strong vor- differences in the scales of the axes.)
tex and deep wave breaking, shown ihi figure 2. in the high aspect ratio case (figure 4(c)) the
mixed fluid is evenly distributed across the whole range of concentrations indicating that the
mixing is deeper still in this case. This is consistent with the mixing due to the wave breaking
in the horizontal stratification, shown in figure 3. In this case the lower concentration isoclines
decrease sharply and it can be seen that there is no fluid remaining at the initial concentration
after the current has propagated five lock lengths, and almost none at 0.8 of initial concentra-
tion after the current has propagated 9.6 lock lengths.
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4. Discussion and conclusions
In this paper we have presented a new experimental technique to determine the cross-

stream averaged density structure of gravity currents. The three cases described in §3 indicate
that there is a broad range of structure associated with the initial development of lock-release
gravity currents, and that this structure is influenced by the aspect ratio of the lock. A common
underlying process by which the fluid of the current is mixed with the ambient fluid is the de-
trainment of dense fluid from the head by wave breaking, which leads to the production of a
stratified following layer. As the current progresses the fluid mixed at the head is displaced
upwards and back into the following stratified fluid by dense fluid moved forward into the
head by frontogenic motions. Once all of the initial dense fluid of the release has been mixed
in this way the wave breaking continues, but the fluid mixed out of the head is now replaced
by less dense fluid from the tail, so that the head becomes progressively diluted.

The fractional height of the head was similar in the three cases considered, so one conse-
quence of the changes in aspect ratio was that the higher aspect ratio currents had relatively
shorter, higher heads. This resulted in more rapid dilution of the head in these cases. Further
exploration of the parameter space will be needed in order to quantify this effect, and the other
features discussed in §3. It is thought that some of the features described, such as the persis-
tent vortical structure in the unit aspect ratio case, are not a direct result of change of aspect
ratio. Changes in the overall height of the lock may be important since these influence the
amount of barocinic vorticity introduced into the flow, and the relative importance of the ini-
tial disturbance produced by removal of the gate. It will also be interesting to determine ',e.
extent to which gravity currents originating from different lock geometries develop seli-
similar behaviour at large times.

Since the experimental technique used here can only resolve cross-stream averaged struc-
ture, we are not able to directly investigate the role played by the three-dimensional structures
important in the mixing, such as the 'lobes and clefts' which form at the nose (Simpson, 1987).
We have only considered lock-releases where the initial height of the dense fluid equals the
depth of the ambient fluid, but we expect that differences in initial fractional depth will effect
the mixing. Another class of gravity current are currents generated by constant flux releases of
dense fluid. In constant-flux gravity currents the process of replenishment of dense fluid at the
head will persist as there is always a supply of dense fluid from the rear. We would expect the
density structure to consist of a homogeneous head and tail, with stratified fluid lying above
the tail. In naturally occurring situations the form of gravity currents often lies somewhere
between the lock releases case and the constant flux case, and so the mixing and the density
structure produced will be correspondingly influenced.
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